

Collaboration and Controversy Among Experts:Rumor Early Detection by Tuning a Comment Generator

Authors: Bing Wang (wangbing1416@gmail.com),

Bingrui Zhao, Ximing Li*, Changchun Li, Renchu Guan, Shengsheng Wang

Project page

My homepage

Social media platforms are inevitably full of rumors, causing lots of damage

Over-the-counter cold and cough medications are being pulled from drugstore shelves in an effort to start the "next plandemic" or force people to get the COVID-19 vaccine.

COVID-19 vaccines are safe for people who have existing health conditions, including conditions that have a higher risk of getting serious illness with COVID-19.

Fully-Supervised RD

A world without chocolate?! Two of the world's biggest chocolate makers could face a shortage

Well, there goes your sweet tooth

If you like your chocolate you can keep your chocolate.

Thankfully, this wouldn't bother me one bit. I love caramel.

×K

Rumor Early Detection

A world without chocolate?! Two of the world's biggest chocolate makers could face a shortage

- Previous RD models always assume that user comments are sufficient to support the detection
- User engagement is limited, resulting in few or even no comments available

Preliminary Analysis

How do the dynamics of comments affect model performance?

C₂

The model performs best when the training and test comments is consistently extensive

C1

Limited comments in early scenarios significantly reduce model performance

Preliminary Analysis

Basic Idea

Generate human-like comments to keep the comments in training and test phases consistently extensive.

The model performs best when the training and test comments is consistently extensive

C1

Limited comments in early scenarios significantly reduce model performance

Overview of CAMERED

Basic Idea

Generate human-like comments to keep the training and test comments consistently extensive.

Collaborating Generator Tuning

> Tuning a generator to produce diverse, knowledgeable, and human-like comments

Mutual Controversy Fusion

Integrating generated and original comments by grouping comments with their stances

Collaborating Generator Tuning

Multiple Experts Structure

- Injecting tunable MoE into frozen pre-trained language models
- Grouping experts with **similar semantics** for heuristic routing

$$\mathbf{A}_i = \{a_{ilm}\}_{l,m \in \{1,\cdots,L\}}, \quad a_{ilm} = \frac{\mathbf{h}_{il} \cdot \mathbf{h}_{im}}{\|\mathbf{h}_{il}\| \times \|\mathbf{h}_{im}\|}.$$

Collaborating Generator Tuning

Knowledgeable Data Synthesis

□ To make generated comments knowledge-able, synthesizing training comments through entity descriptions.

$$\begin{aligned} \min_{\boldsymbol{\phi}_{1:L}} \mathcal{L}_{GT} &= \frac{1}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} \frac{1}{|\mathbf{c}_{ij}|} \sum_{k=1}^{|\mathbf{c}_{ij}|} \ell_{CE} \Big(\mathcal{G}_{\boldsymbol{\pi}}(\mathbf{x}_{i}, \mathbf{c}_{ij < k}), c_{ijk} \Big) \\ &+ \frac{1}{|\mathcal{D}_{\kappa}|} \sum_{i=1}^{|\mathcal{D}_{\kappa}|} \frac{1}{|\mathbf{c}_{i}^{\kappa}|} \sum_{k=1}^{|\mathbf{c}_{i}^{\kappa}|} \ell_{CE} \Big(\mathcal{G}_{\boldsymbol{\pi}}(\mathbf{x}_{i}, \mathbf{c}_{i < k}^{\kappa}), c_{ik}^{\kappa} \Big). \end{aligned}$$

Collaborating Generator Tuning

Collaborating Generator Tuning

Adversarial Style Alignment

- Training an additional expert model to simulate the language style of humans
- Adversarially fooling the style discriminator to confuse styles from experts and humans

$$\max_{\boldsymbol{\phi}_{1:L}} \min_{\mathbf{W}_{S}} \mathcal{L}_{SA} = \frac{1}{N + |\mathcal{D}_{\kappa}|} \sum_{i=1}^{N + |\mathcal{D}_{\kappa}|} \ell_{CE}(\mathbf{o}_{i} \mathbf{W}_{S}, 0) + \ell_{CE}(\mathbf{h}_{i}^{H} \mathbf{W}_{S}, 1).$$

Mutual Controversy Fusion

- Grouping generated and original comments into two subsets by semantic similarities
- Extracting **features** of comments in two subsets, respectively 11.
- Fusing them into one comment feature and feed it into the classifier III.

$$\begin{cases} \mathcal{H}_{i}^{+} \leftarrow \mathbf{h}_{ij}^{c}, & \xi_{ij} > \tau, \\ \mathcal{H}_{i}^{-} \leftarrow \mathbf{h}_{ij}^{c}, & \text{otherwise.} \end{cases} \quad \xi_{ij} = 1 - \frac{\mathbf{h}_{ij}^{c} \cdot \mathbf{e}_{i}^{p}}{\|\mathbf{h}_{ij}^{c}\| \times \|\mathbf{e}_{i}^{p}\|},$$

Experimental Results on 5 Baselines and 4 Datasets

D-4---- T. .:44---15 [05]

Training: 16 original comments

Test: 2 original and 14 generated comments

D-4--4 147-16-16 [04]

Model		Ι	Dataset: <i>Twi</i>	tter15 [25]			Dataset: Weibo16 [24]					
	Acc.	F1	AUC	P.	R.	Avg. Δ	Acc.	F1	AUC	P.	R.	Avg. Δ
cBERT [7]	76.07 ± 1.3	75.49 ± 1.2	91.72 ± 0.3	76.25 ± 2.0	76.12 ± 1.3	-	82.96±0.7	81.85±0.5	81.84±0.3	81.98 ± 1.0	81.84±0.3	-
+ CGT (ours)	$79.29 \pm 1.8^*$	$78.91 \pm 1.7^*$	$93.24 \pm 0.3^*$	$79.85 \pm 1.4^*$	$79.35{\pm}1.8^*$	+3.00	84.94±0.6*	$83.87 \pm 0.7^*$	$83.67 \pm 1.0^*$	$84.18 \pm 0.7^*$	$83.67 {\pm} 1.0^*$	+1.97
dEFEND [33]	75.72 ± 2.0	$75.17{\pm}2.2$	91.44 ± 0.7	$75.62{\pm}2.0$	$75.82{\pm}1.6$	-	82.80 ± 1.0	$81.98{\pm}0.8$	$82.60{\pm}0.8$	$81.87{\pm0.8}$	$82.60{\pm}0.8$	-
+ CGT (ours)	$79.82 \pm 1.5^*$	$79.27 \pm 1.8^*$	$92.42 \pm 0.9^*$	79.97±1.9*	$79.80 \pm 1.5^*$	+3.50	$84.22 \pm 0.9^*$	$83.35 \pm 0.8^*$	$83.63{\pm}0.8^*$	$83.26 \pm 1.0^*$	$83.63 \pm 0.8^*$	+1.25
BERTEmo [58]	75.90 ± 1.9	$75.39 {\pm} 2.0$	$91.63 \!\pm\! 0.4$	$76.02{\pm}1.6$	$75.87{\pm}1.5$	-	$82.75{\pm0.9}$	$81.72{\pm}0.9$	$81.85 \!\pm\! 0.8$	$81.62{\pm}0.9$	$81.85 {\pm} 0.8$	-
+ CGT (ours)	$78.57 \pm 1.9^*$	77.73±2.3*	$93.25 \pm 0.7^*$	$79.63 \pm 1.7^*$	$78.67 \pm 1.8^*$	+2.61	$84.72 \pm 1.1^*$	$83.68 \pm 0.7^*$	$83.52 {\pm} 0.7^*$	$83.87 {\pm} 0.8^*$	$83.52 \pm 0.7^*$	+1.90
KAHAN [38]	75.89 ± 2.0	$75.70{\pm}1.9$	$92.58 \!\pm\! 0.3$	$76.21 {\pm} 1.8$	75.91 ± 2.0	-	82.93 ± 1.1	$81.83 {\pm} 0.8$	$\textbf{81.87} \!\pm\! 1.1$	$81.95 \!\pm\! 1.0$	$\textbf{81.87} \!\pm\! 1.1$	-
+ CGT (ours)	$78.57 \pm 1.0^*$	$78.15 \pm 1.0^*$	92.11 ± 0.5	$79.77 \pm 1.7^*$	$78.57 \pm 1.0^*$	+2.18	$84.38 \pm 1.1^*$	$83.45{\pm}1.0^*$	$83.57{\pm}1.1^*$	$83.46 \pm 0.9^*$	$83.57{\pm}1.1^*$	+1.60
CAS-FEND [29]	75.18 ± 1.2	$74.99 {\pm} 1.2$	$91.56{\pm0.6}$	$75.13 \!\pm\! 1.1$	$75.20 {\pm} 1.3$	-	$83.25{\pm0.6}$	$81.69{\pm0.6}$	$80.99 {\pm} 0.8$	$83.00 \!\pm\! 1.1$	$80.99 {\pm} 0.8$	-
+ CGT (ours)	$78.93 \pm 1.8^*$	$78.86 \pm 1.8^*$	$92.31 \pm 0.5^*$	$79.39 \pm 1.5^*$	$78.89 \pm 1.3^*$	+3.26	84.54±0.7*	$83.33{\pm}0.8^*$	$82.93{\pm}0.9^*$	$83.95 \pm 0.9^*$	$82.93 \pm 0.9^*$	+1.55
CAMERED	76.43±1.6	76.18±1.4	91.92±0.3	77.12±1.5	76.47 ± 1.7	-	83.72±0.3	82.66±0.4	82.60±0.4	82.72 ± 0.4	82.60±0.4	-
+ CGT (ours)	$80.36 \pm 1.3^*$	80.11±1.4*	$93.54 \pm 1.0^*$	$80.68 {\pm} 1.6^*$	$80.28 {\pm} 1.5^{\boldsymbol{*}}$	+3.37	$86.21 \pm 1.0^*$	$85.32{\pm}1.0^*$	$85.29 \!\pm\! 1.1^{\boldsymbol{*}}$	$85.48 \pm 1.2^*$	$85.29 {\pm} 1.1^{\mathbf{*}}$	+2.66
Model	Dataset: Twitter16 [25]						Dataset: Weibo20 [58]					
TVIO GET	Acc.	F1	AUC	P.	R.	Avg. Δ	Acc.	F1	AUC	P.	R.	Avg. Δ
cBERT [7]	74.54 ± 2.5	74.21 ± 2.0	92.27 ± 1.8	75.50 ± 2.7	74.54 ± 2.5	-	86.16±0.6	86.14±0.6	86.19±0.6	86.47 ± 0.6	86.19 ± 0.6	-
+ CGT (ours)	$78.44 \pm 1.6^*$	$78.40 \pm 1.6^*$	$93.77 \pm 0.7^*$	$79.52 \pm 1.2^*$	$78.85 \pm 1.7^*$	+3.58	$88.33 \pm 0.8^*$	$88.32 \pm 0.8^*$	$88.32 {\pm} 0.8^{\boldsymbol{*}}$	$88.38 \pm 0.8^*$	$88.32 \pm 0.8^*$	+2.10
dEFEND [33]	$72.98 \!\pm\! 1.9$	$72.82 {\pm} 2.1$	$92.50{\pm}0.6$	$75.25{\pm}1.9$	$72.96 {\pm} 2.0$	-	$86.28{\pm0.5}$	$86.26 \!\pm\! 0.5$	$86.27{\pm0.5}$	$86.36 \!\pm\! 0.4$	$86.27{\pm0.5}$	-
+ CGT (ours)	$77.66 \pm 1.5^*$	$77.65 \pm 1.6^*$	$93.72 \pm 0.3^*$	$79.00 \pm 1.5^*$	$78.15 \pm 1.4^*$	+3.93	88.38±0.8*	$88.38 \pm 0.8^*$	$88.39 {\pm} 0.8^{\boldsymbol{*}}$	$88.41 \pm 0.8^*$	$88.39 \pm 0.8^*$	+2.10
BERTEmo [58]	$74.02{\pm}2.4$	$73.83{\pm}2.4$	$92.23 \!\pm\! 2.1$	$75.16{\pm}1.9$	$74.26{\pm}2.6$	-	86.03 ± 0.9	86.00 ± 0.9	86.05 ± 0.9	$86.33{\pm}0.8$	86.05 ± 0.9	-
+ CGT (ours)	$77.14 \pm 1.7^*$	$77.12 \pm 1.7^*$	$92.87{\pm}1.8$	77.87±2.2*	$77.35 \pm 1.8^*$	+2.57	88.08±0.7*	$88.08 \pm 0.7^*$	$88.09 \pm 0.7^*$	$88.13 \pm 0.7^*$	$88.09 \pm 0.7^*$	+2.00
KAHAN [38]	74.80 ± 1.9	$74.89{\pm}2.0$	$91.04{\pm}1.2$	$75.41{\pm}2.0$	$74.93{\pm}2.0$	-	86.13 ± 0.3	86.13 ± 0.3	86.14 ± 0.3	$86.20{\pm0.3}$	86.14 ± 0.3	-
+ CGT (ours)	77.92±0.9*	77.98±0.9*	92.28±0.3*	$78.21 \pm 1.0^*$	78.11±0.9*	+2.68	88.25±0.5*	88.25±0.5*	88.26±0.5*	88.27±0.5*	88.26±0.5*	+2.11
CAS-FEND [29]	73.76 ± 1.8	7					4.					
+ CGT (ours)	78.44+1.6*		ur me	ethod	cons	iste	ntlv a	nd si	anitic	antiv	ımpr	OVE

+ our generated comments

+ our comment fusion module

Our method consistently and significantly improves the performance of baseline models

Experimental Results on 5 Baselines and 4 Datasets

Train: 2 original and 14 generated comments Test: 2 original and 14 generated comments

Model		Г	ataset: Twi	tter15 [25]		Dataset: Weibo16 [24]							
	Acc.	F1	AUC	P.	R.	Avg. Δ	Acc.	F1	AUC	P.	R.	Avg. Δ	
cBERT [7]	76.61 ± 1.4	76.02 ± 1.5	91.86 ±1.0	76.83 ± 1.3	76.64 ± 1.5	-	82.56 ± 0.5	81.23 ± 0.7	80.97 ± 1.2	81.79±0.6	80.97 ±1.2	-	
+ CGT (ours)	$78.22 \pm 1.5^*$	$77.81 \pm 1.2^*$	$91.88 \!\pm\! 0.3$	$78.99 \pm 1.2^*$	$78.25{\pm}1.6^*$	+1.44	84.88±1.0*	$83.91 \pm 0.9^*$	$83.91 \pm 1.1^*$	$84.21 \pm 1.3^*$	$83.91 \pm 1.1^*$	+2.66	
dEFEND [33]	76.79 ± 1.2	$75.77 \!\pm\! 1.3$	$92.12{\pm}0.8$	$78.39 \!\pm\! 1.0$	$76.96{\pm}1.1$	-	82.58 ± 1.2	$\textbf{81.31} {\pm} 1.1$	$81.03 \!\pm\! 1.2$	$81.75{\pm}0.8$	$81.03 \!\pm\! 1.2$	-	
+ CGT (ours)	$79.42 \pm 0.9^*$	$79.08 \pm 1.2^*$	$93.01 \pm 0.5^*$	$80.34 \pm 1.1^*$	$79.56 \pm 0.9^*$	+2.28	$84.91 \pm 0.4^*$	83.66±0.3*	$83.13 \pm 0.4^*$	$84.50 \pm 0.8^*$	$83.13 \pm 0.4^*$	+2.33	
BERTEmo [58]	76.43 ± 1.0	$75.70 \!\pm\! 1.2$	$92.54{\pm}0.6$	$77.76 \!\pm\! 1.4$	$76.61{\pm}1.5$	-	82.69 ± 1.3	$81.60 \!\pm\! 1.1$	$81.64{\pm}0.8$	$81.79 \!\pm\! 1.1$	$81.64{\pm}0.8$	-	
+ CGT (ours)	$78.57 \pm 0.9^*$	$77.73 \pm 0.9^*$	$93.25 \!\pm\! 0.7^{*}$	$79.63 \pm 1.2^*$	$78.67 \pm 1.3^*$	+1.76	$84.38 \pm 0.6^*$	$83.28 \pm 0.8^*$	$83.14{\pm}0.9^*$	$83.52 \pm 0.7^*$	$83.14{\pm}0.9^*$	+1.62	
KAHAN [38]	76.43 ± 1.2	$75.89 {\pm} 1.2$	$92.56 \!\pm\! 0.7$	$76.40 \!\pm\! 1.1$	$76.42{\pm}1.2$	-	82.51 ± 1.1	$81.24 {\pm} 1.0$	$81.01{\pm}0.8$	81.64 ± 1.0	$81.01{\pm}0.8$	-	
+ CGT (ours)	$79.29 \pm 1.1^*$	$78.66 \pm 0.9^*$	$93.17 \pm 0.6^*$	$80.02 \pm 1.2^*$	$79.38{\pm}1.1^*$	+2.56	84.41±0.7*	$83.46 \pm 0.7^*$	$83.55 \pm 0.9^*$	$83.46 \pm 0.8^*$	$83.55 \pm 0.9^*$	+2.20	
CAS-FEND [29]	75.54 ± 0.8	$75.33{\pm}0.8$	91.39 ± 0.7	$75.68{\pm0.8}$	$75.45 {\pm} 0.7$	-	83.19 ± 1.1	$81.99 {\pm} 1.0$	$81.77 \!\pm\! 0.7$	$82.37{\pm}1.6$	$81.77 {\pm} 0.7$	-	
+ CGT (ours)	$78.93 \pm 0.9^*$	$78.66 \pm 0.9^*$	$92.66 \pm 0.7^*$	79.16 ±1.0*	$78.90 \pm 0.8^*$	+2.98	$84.51 \pm 0.8^*$	$82.95 \pm 1.0^*$	$82.64 \pm 1.0^*$	83.90±0.9*	$82.64 \pm 1.0^*$	+1.11	
CAMERED	76.79 ± 1.5	$76.30{\pm}1.2$	$91.79 {\pm} 0.0$	$77.98 \!\pm\! 1.8$	$76.93{\pm}1.1$	-	82.23 ± 0.7	$82.00 {\pm} 0.5$	$81.76 \!\pm\! 0.7$	$82.60{\pm}1.1$	81.76 ± 0.7	-	
+ CGT (ours)	$80.00 \pm 1.3^*$	$79.46 \pm 1.3^*$	$92.75 \pm 0.8^*$	81.30±1.2*	$79.98 \pm 1.2^*$	+2.74	$86.00 \pm 1.1^*$	$85.13 \pm 1.4^*$	$85.18 \pm 1.5^*$	$85.08 \pm 1.4^*$	$85.18 \pm 1.5^*$	+3.24	
Model	Dataset: Twitter16 [25]						Dataset: Weibo20 [58]						
Model		Γ	ataset: <i>Twi</i>	tter16 [25]				I	Dataset: <i>We</i>	ibo20 [58]			
Model	Acc.	F1	ataset: <i>Twi</i> AUC	tter16 [25] P.	R.	Avg. Δ	Acc.	F1	Dataset: We AUC	ibo20 [58] P.	R.	Avg. Δ	
Model cBERT [7]	Acc. 75.32±2.4				R. 75.67±2.4	Avg. Δ	Acc. 85.84±0.4				R. 85.86±0.4	Avg. Δ	
		F1	AUC	P.		Avg. Δ - +2.12		F1 85.82±0.4	AUC	P.		Avg. Δ - +1.92	
cBERT [7]	75.32±2.4	F1 75.07±2.5	AUC 93.18±0.9	P. 76.90±2.1	75.67±2.4	-	85.84±0.4	F1 85.82±0.4	AUC 85.86±0.4	P. 86.01±0.3	85.86±0.4	-	
cBERT [7] + CGT (ours) dEFEND [33] + CGT (ours)	75.32±2.4 77.92±2.0*	F1 75.07±2.5 77.96±2.1*	AUC 93.18±0.9 94.07±0.3*	P. 76.90±2.1 78.53±2.2*	75.67±2.4 78.26±2.1*	-	85.84±0.4 87.78±0.3*	F1 85.82±0.4 87.78±0.3* 85.86±0.7	AUC 85.86±0.4 87.79±0.3*	P. 86.01±0.3 87.85±0.3*	85.86±0.4 87.79±0.3*	-	
cBERT [7] + CGT (ours) dEFEND [33] + CGT (ours) BERTEmo [58]	75.32±2.4 77.92±2.0* 75.06±2.1	F1 75.07±2.5 77.96±2.1* 75.09±2.0	AUC 93.18±0.9 94.07±0.3* 93.31±0.5 94.32±1.0* 92.22±1.3	P. 76.90±2.1 78.53±2.2* 76.49±1.4	75.67±2.4 78.26±2.1* 75.34±2.0	+2.12	85.84±0.4 87.78±0.3* 85.87±0.7	F1 85.82±0.4 87.78±0.3* 85.86±0.7	AUC 85.86±0.4 87.79±0.3* 85.88±0.7	P. 86.01±0.3 87.85±0.3* 85.97±0.7	85.86±0.4 87.79±0.3* 85.88±0.7	+1.92	
cBERT [7] + CGT (ours) dEFEND [33] + CGT (ours)	75.32±2.4 77.92±2.0* 75.06±2.1 77.92±2.4*	F1 75.07±2.5 77.96±2.1* 75.09±2.0 77.86±2.4*	AUC 93.18±0.9 94.07±0.3* 93.31±0.5 94.32±1.0*	P. 76.90±2.1 78.53±2.2* 76.49±1.4 79.65±1.9*	75.67±2.4 78.26±2.1* 75.34±2.0 78.34±2.0*	+2.12	85.84±0.4 87.78±0.3* 85.87±0.7 87.94±0.7*	$F1 \\ 85.82 \pm 0.4 \\ 87.78 \pm 0.3^* \\ 85.86 \pm 0.7 \\ 87.93 \pm 0.7^* \\ 85.60 \pm 1.0$	AUC 85.86±0.4 87.79±0.3* 85.88±0.7 87.95±0.7*	P. 86.01±0.3 87.85±0.3* 85.97±0.7 88.03±0.8*	85.86±0.4 87.79±0.3* 85.88±0.7 87.95±0.7*	+1.92	
cBERT [7] + CGT (ours) dEFEND [33] + CGT (ours) BERTEmo [58]	75.32±2.4 77.92±2.0* 75.06±2.1 77.92±2.4* 74.80±1.9	F1 75.07±2.5 77.96±2.1* 75.09±2.0 77.86±2.4* 74.78±1.9	AUC 93.18±0.9 94.07±0.3* 93.31±0.5 94.32±1.0* 92.22±1.3	P. 76.90±2.1 78.53±2.2* 76.49±1.4 79.65±1.9* 75.83±2.3	75.67±2.4 78.26±2.1* 75.34±2.0 78.34±2.0* 74.95±2.0	+2.12 - +2.56	85.84±0.4 87.78±0.3* 85.87±0.7 87.94±0.7* 85.62±1.0	$F1 \\ 85.82 \pm 0.4 \\ 87.78 \pm 0.3^* \\ 85.86 \pm 0.7 \\ 87.93 \pm 0.7^* \\ 85.60 \pm 1.0$	AUC 85.86 ± 0.4 $87.79\pm0.3^*$ 85.88 ± 0.7 $87.95\pm0.7^*$ 85.64 ± 1.0	P. 86.01±0.3 87.85±0.3* 85.97±0.7 88.03±0.8* 85.80±0.9	85.86±0.4 87.79±0.3* 85.88±0.7 87.95±0.7* 85.64±1.0	+1.92 - +2.07 -	
cBERT [7] + CGT (ours) dEFEND [33] + CGT (ours) BERTEmo [58] + CGT (ours)	75.32±2.4 77.92±2.0* 75.06±2.1 77.92±2.4* 74.80±1.9 77.40±1.8*	F1 75.07±2.5 77.96±2.1* 75.09±2.0 77.86±2.4* 74.78±1.9 77.48±1.8*	AUC 93.18±0.9 94.07±0.3* 93.31±0.5 94.32±1.0* 92.22±1.3 94.11±0.4*	P. 76.90±2.1 78.53±2.2* 76.49±1.4 79.65±1.9* 75.83±2.3 78.85±1.7*	75.67±2.4 78.26±2.1* 75.34±2.0 78.34±2.0* 74.95±2.0 77.66±1.5*	+2.12 - +2.56	85.84±0.4 87.78±0.3* 85.87±0.7 87.94±0.7* 85.62±1.0 87.88±0.3*	$F1 \\ 85.82 \pm 0.4 \\ 87.78 \pm 0.3^* \\ 85.86 \pm 0.7 \\ 87.93 \pm 0.7^* \\ 85.60 \pm 1.0 \\ 87.87 \pm 0.3^*$	AUC 85.86 ± 0.4 $87.79\pm0.3^*$ 85.88 ± 0.7 $87.95\pm0.7^*$ 85.64 ± 1.0 $87.88\pm0.3^*$	P. 86.01±0.3 87.85±0.3* 85.97±0.7 88.03±0.8* 85.80±0.9 87.92±0.3*	85.86±0.4 87.79±0.3* 85.88±0.7 87.95±0.7* 85.64±1.0 87.88±0.3*	+1.92 - +2.07 -	
cBERT [7] + CGT (ours) dEFEND [33] + CGT (ours) BERTEmo [58] + CGT (ours) KAHAN [38] + CGT (ours) CAS-FEND [29]	75.32±2.4 77.92±2.0* 75.06±2.1 77.92±2.4* 74.80±1.9 77.40±1.8* 74.80±2.3	F1 75.07±2.5 77.96±2.1* 75.09±2.0 77.86±2.4* 74.78±1.9 77.48±1.8* 74.85±2.2 78.37±1.7* 74.59±1.3	AUC 93.18±0.9 94.07±0.3* 93.31±0.5 94.32±1.0* 92.22±1.3 94.11±0.4* 92.32±0.6 92.44±0.4 92.34±1.0	P. 76.90±2.1 78.53±2.2* 76.49±1.4 79.65±1.9* 75.83±2.3 78.85±1.7* 75.22±2.0 78.55±1.5*	75.67±2.4 78.26±2.1* 75.34±2.0 78.34±2.0* 74.95±2.0 77.66±1.5* 74.89±2.3	+2.12 - +2.56 - +2.58	85.84±0.4 87.78±0.3* 85.87±0.7 87.94±0.7* 85.62±1.0 87.88±0.3* 85.90±0.7	F1 85.82±0.4 87.78±0.3* 85.86±0.7 87.93±0.7* 85.60±1.0 87.87±0.3* 85.89±0.7 87.99±0.6*	AUC 85.86±0.4 87.79±0.3* 85.88±0.7 87.95±0.7* 85.64±1.0 87.88±0.3* 85.92±0.7 88.02±0.6* 85.76±0.5	P. 86.01±0.3 87.85±0.3* 85.97±0.7 88.03±0.8* 85.80±0.9 87.92±0.3* 86.06±0.7 88.18±0.5* 85.85±0.5	85.86±0.4 87.79±0.3* 85.88±0.7 87.95±0.7* 85.64±1.0 87.88±0.3* 85.92±0.7	+1.92 - +2.07 - +2.23 -	
cBERT [7] + CGT (ours) dEFEND [33] + CGT (ours) BERTEmo [58] + CGT (ours) KAHAN [38] + CGT (ours) CAS-FEND [29] + CGT (ours)	75.32±2.4 77.92±2.0* 75.06±2.1 77.92±2.4* 74.80±1.9 77.40±1.8* 74.80±2.3 78.25±1.6*	F1 75.07±2.5 77.96±2.1* 75.09±2.0 77.86±2.4* 74.78±1.9 77.48±1.8* 74.85±2.2 78.37±1.7*	AUC 93.18±0.9 94.07±0.3* 93.31±0.5 94.32±1.0* 92.22±1.3 94.11±0.4* 92.32±0.6 92.44±0.4	P. 76.90±2.1 78.53±2.2* 76.49±1.4 79.65±1.9* 75.83±2.3 78.85±1.7* 75.22±2.0 78.55±1.5*	75.67±2.4 78.26±2.1* 75.34±2.0* 74.95±2.0 77.66±1.5* 74.89±2.3 78.37±1.8*	+2.12 - +2.56 - +2.58	85.84±0.4 87.78±0.3* 85.87±0.7 87.94±0.7* 85.62±1.0 87.88±0.3* 85.90±0.7 88.00±0.6*	F1 85.82±0.4 87.78±0.3* 85.86±0.7 87.93±0.7* 85.60±1.0 87.87±0.3* 85.89±0.7 87.99±0.6*	AUC 85.86±0.4 87.79±0.3* 85.88±0.7 87.95±0.7* 85.64±1.0 87.88±0.3* 85.92±0.7 88.02±0.6*	P. 86.01±0.3 87.85±0.3* 85.97±0.7 88.03±0.8* 85.80±0.9 87.92±0.3* 86.06±0.7 88.18±0.5* 85.85±0.5	85.86±0.4 87.79±0.3* 85.88±0.7 87.95±0.7* 85.64±1.0 87.88±0.3* 85.92±0.7 88.02±0.6*	+1.92 - +2.07 - +2.23 -	
cBERT [7] + CGT (ours) dEFEND [33] + CGT (ours) BERTEmo [58] + CGT (ours) KAHAN [38] + CGT (ours) CAS-FEND [29]	75.32±2.4 77.92±2.0* 75.06±2.1 77.92±2.4* 74.80±1.9 77.40±1.8* 74.80±2.3 78.25±1.6* 74.55±1.4	F1 75.07±2.5 77.96±2.1* 75.09±2.0 77.86±2.4* 74.78±1.9 77.48±1.8* 74.85±2.2 78.37±1.7* 74.59±1.3	AUC 93.18±0.9 94.07±0.3* 93.31±0.5 94.32±1.0* 92.22±1.3 94.11±0.4* 92.32±0.6 92.44±0.4 92.34±1.0	P. 76.90±2.1 78.53±2.2* 76.49±1.4 79.65±1.9* 75.83±2.3 78.85±1.7* 75.22±2.0 78.55±1.5*	$75.67{\pm}2.4$ $78.26{\pm}2.1^*$ $75.34{\pm}2.0$ $78.34{\pm}2.0^*$ $74.95{\pm}2.0$ $77.66{\pm}1.5^*$ $74.89{\pm}2.3$ $78.37{\pm}1.8^*$ $74.85{\pm}1.4$	+2.12 - +2.56 - +2.58 - +2.78	85.84±0.4 87.78±0.3* 85.87±0.7 87.94±0.7* 85.62±1.0 87.88±0.3* 85.90±0.7 88.00±0.6* 85.74±0.5	F1 85.82±0.4 87.78±0.3* 85.86±0.7 87.93±0.7* 85.60±1.0 87.87±0.3* 85.89±0.7 87.99±0.6*	AUC 85.86±0.4 87.79±0.3* 85.88±0.7 87.95±0.7* 85.64±1.0 87.88±0.3* 85.92±0.7 88.02±0.6* 85.76±0.5	P. 86.01±0.3 87.85±0.3* 85.97±0.7 88.03±0.8* 85.80±0.9 87.92±0.3* 86.06±0.7 88.18±0.5* 85.85±0.5	85.86 ± 0.4 $87.79\pm0.3^*$ 85.88 ± 0.7 $87.95\pm0.7^*$ 85.64 ± 1.0 $87.88\pm0.3^*$ 85.92 ± 0.7 $88.02\pm0.6^*$ 85.76 ± 0.5	+1.92 - +2.07 - +2.23 - +2.10	

+ our generated comments

+ our comment fusion module

Compared with Generation Methods

Model	Dataset: Twitter15 [25]			Dataset: Twitter16 [24]			Dataset: Weibo16 [25]			Dataset: Weibo20 [24]			Avg. Δ
	Acc.	F1	AUC	Acc.	F1	AUC	Acc.	F1	AUC	Acc.	F1	AUC	8
CAS-FEND [29]	71.18	74.99	91.56	73.76	73.69	91.44	83.25	81.69	80.99	85.51	85.47	85.54	
+ CGT w/ T5 [6]	77.92	78.09	92.79	78.04	77.43	92.51	83.75	82.47	82.08	86.86	86.86	86.86	+2.22
+ CGT w/ Llama [37]	78.93	78.86	92.31	78.44	78.32	93.90	84.54	83.33	82.93	87.92	87.92	87.93	+3.02
+ DELL w/ Llama [41]	77.80	77.64	92.72	77.86	77.26	91.20	83.85	82.48	81.92	86.84	86.83	86.86	+2.02
+ GenFEND w/ Llama [28]	77.92	77.88	92.76	77.86	77.25	91.83	83.86	82.55	82.13	87.03	87.03	87.03	+2.17
CAMERED w/o CGT	76.43	76.18	91.92	75.06	74.98	92.92	83.72	82.66	82.60	86.56	86.55	86.56	4
+ CGT w/ T5 [6]	79.02	79.29	93.02	78.75	78.30	93.02	85.07	84.12	84.13	87.85	87.84	87.85	+1.84
+ CGT w/ Llama [37]	80.36	80.11	93.54	79.55	79.53	93.69	86.21	85.32	85.29	88.63	88.63	88.65	+2.78
+ DELL w/ Llama [41]	78.90	79.07	92.45	78.68	78.45	92.86	85.01	84.00	83.87	87.65	87.65	87.65	+1.68
+ GenFEND w/ Llama [28]	79.22	79.30	92.62	78.83	78.46	92.51	85.09	84.10	84.00	87.80	87.80	87.80	+1.78

Our generation method outperforms SOTA generation methods DELL and GenFEND

Our T5(220M)-based generator performs consistently Llama(7B)-based SOTA generator

Sensitivity Analysis

The model performs best when the total number of comments Is balanced between training and testing

Our generated comments even outperform humanwritten comments in the original dataset

Comments with noisy writing styles consistently decrease the model performance

- ❖ We first empirically reveal a conclusion: the model performs best when the training and test comments is consistently extensive
- We tune a comment generator to produce diverse, knowledgeable, and human-like comments to keep the comments in training and test phases consistently extensive
- We integrate original and generated comments by designing a mutual controversy fusion module
- Extensive experiments are conducted to demonstrate the performance of our generated comments and comment fusion method

Thanks.

Collaboration and Controversy Among Experts:

Rumor Early Detection by Tuning a Comment Generator

Authors: Bing Wang (wangbing1416@gmail.com),

Bingrui Zhao, Ximing Li*, Changchun Li, Renchu Guan, Shengsheng Wang

Project page

My homepage