Remember Past, Anticipate Future: Learning Continual Multimodal Misinformation Detectors

Bing Wang, Ximing Li*, Mengzhe Ye, Changchun Li, Bo Fu, Jianfeng Qu, Lin Yuanbo Wu

Motivation

New Task Continual Multimodal Misinformation Detection

On real-world online social media, **new events always continually emerge**, which renders MMD models trained on offline data ineffective in practical scenarios.

> Challenge 1: Past Knowledge Forgetting

When facing data streams, especially large-scale data, training on new data consistently causes the detection performance of MMD models to decrease on past data.

> Challenge 2: Social Environment Evolving

In online scenarios, the social environment consistently changes over time, which leads to a gradual evolution of the data distributions, especially fake ones.

Our Proposed Method: DAEDCMD

To address these two challenges, we propose a new framework **DAEDCMD**, which aims to restore the knowledge of past data and simultaneously learn the dynamic environmental distribution. Specifically, DAEDCMD consists of three following modules.

Module 1: Base Feature Extractor

This module extracts **semantic features** of image/text content and fusing them into a multimodal feature. It can be replaced by various SOTA MMD methods, *e.g.*, BMR.

Module 2: Dynamically Adapted MoE

Generally, this module aims to alleviate the knowledge forgetting issue by employing an MoE-based model, which consists of a Dirichlet process mixture-based method to dynamically expand experts and an exponential moving average optimized event-shared expert.

- > Key Part A: Event-shared & Event-specific Experts
- ✓ Specifically, we initialize a event-shared expert and M event-specific experts, and each expert contains a discriminator part and a variational generator part. The discriminator is implemented as a LoRA model and the generator is structured as a variational autoencoder, which includes an encoder and a decoder to reconstruct the input.
- > Key Part B: Dirichlet Expert Expanding
- Dynamically expand the number of experts

$$-\log \rho_{i,m} \propto \begin{cases} -\log \sum \rho_{$$

Module 3: Environmental Dynamics Model

To predict the dynamics, we train a **dynamics model** to predict the environmental distribution (implemented by a **Gaussian distribution**) of future samples, and sample an environmental feature for veracity prediction.

$$\begin{split} \mathcal{L}_{DM} = & \frac{1}{K} \int_{0}^{K} \|\hat{\mu}_{\tau} - \mu_{\tau}\|_{2}^{2} + \|\hat{\sigma}_{\tau} - \sigma_{\tau}\|_{2}^{2} dt, \\ \text{s.t.} \quad & H_{\mu_{0}} = \mu_{0} W_{E}, \ H_{\sigma_{0}} = \sigma_{0} W_{E}, \quad \hat{\mu}_{\tau} = H_{\mu_{\tau}} W_{D}, \ \hat{\sigma}_{\tau} = H_{\sigma_{\tau}} W_{D}, \\ & H_{\mu_{\tau}} = H_{\mu_{0}} + \int_{0}^{\tau} \mathcal{G}_{\phi_{\mu}}(H_{\mu}, t) dt, \ H_{\sigma_{\tau}} = H_{\sigma_{0}} + \int_{0}^{\tau} \mathcal{G}_{\phi_{\sigma}}(H_{\sigma}, t) dt, \end{split}$$

Experimental Results

Model	Dataset: GossipCop [31]				Dataset: Weibo [18]				Dataset: Twitter [1]			
	Accuracy	F1	F1 _{real}	F1 _{fake}	Accuracy	F1	F1 _{real}	F1 _{fake}	Accuracy	F1	F1 _{real}	F1 _{fake}
Base [6, 13]	84.52 ± 0.7	73.32±1.3	90.61 ±0.5	57.02 ±1.8	87.98±0.7	87.94 ± 0.7	87.27 ± 0.8	88.60 ± 0.7	62.20 ± 1.8	62.10 ± 1.8	60.98 ±1.9	63.22±1.8
+ EWC [12, 21]	84.91 ± 0.6	$74.95 {\pm} 2.2$	90.69 ± 0.5	58.81 ± 1.6	$88.46 \!\pm\! 0.5$	$88.41 {\pm} 0.5$	$87.64{\pm0.6}$	$89.19 {\pm} 0.5$	$64.13 \!\pm\! 1.1$	$63.73 \!\pm\! 1.4$	$60.68{\pm}1.8$	$66.78 \!\pm\! 2.1$
+ Replay [22]	$84.90 \!\pm\! 1.2$	$74.81 {\pm} 2.2$	$90.68 \!\pm\! 0.7$	$59.00 \!\pm\! 1.7$	$88.53 \!\pm\! 0.8$	$88.47 \!\pm\! 0.8$	$87.65 {\pm} 0.8$	$89.30 {\pm} 0.9$	$63.90 \!\pm\! 1.8$	$63.82 \!\pm\! 1.7$	$62.58 \!\pm\! 1.2$	$65.05 \!\pm\! 1.4$
+ LoRAMoE [9]	$84.89 {\pm} 1.2$	$74.91{\pm}0.8$	90.67 ± 0.9	$59.18 \!\pm\! 1.4$	88.60 ± 0.9	$88.55 {\pm} 0.9$	$87.75 \!\pm\! 1.0$	$89.34 {\pm} 0.9$	$64.64 {\pm} 1.3$	$64.56 \!\pm\! 1.3$	$62.91{\pm}1.8$	66.21 ± 1.9
+ DaedCmd	86.21 ±0.8	76.13 ± 0.5	91.64 ±0.6	60.63 ±1.0	90.07 ±0.6	90.05 ±0.6	89.67 ±0.6	90.50 ±0.6	67.66 ±1.7	67.44 ±1.5	65.64 ±1.3	69.24 ±2.0
SAFE [46]	84.31 ±1.4	73.93±0.6	90.38 ±1.1	57.47 ±1.2	87.30 ±1.2	87.16 ±1.2	85.82±1.1	88.50 ± 1.1	62.46 ±1.8	61.69 ±2.4	58.49 ± 1.7	66.89 ±2.1
+ EWC [12, 21]	84.63 ± 0.7	$74.48 {\pm} 0.7$	$90.85 {\pm} 1.5$	$59.12 {\pm} 1.6$	$87.90 {\pm} 0.9$	$87.88 \!\pm\! 0.9$	$87.43{\pm}0.9$	$88.32 {\pm} 0.8$	$63.25 \!\pm\! 1.4$	$62.90 \!\pm\! 1.4$	60.33 ± 1.9	$65.48 {\pm} 1.9$
+ Replay [22]	84.81 ± 0.7	$74.68 {\pm} 1.1$	$90.54 {\pm} 0.6$	$58.76 \!\pm\! 2.2$	$88.67 \!\pm\! 1.0$	$88.60 \!\pm\! 1.0$	$87.72 {\pm} 1.0$	$89.49 {\pm} 1.0$	$64.01{\pm}0.6$	$62.73 \!\pm\! 1.2$	59.73 ± 2.0	$67.73 {\pm} 1.9$
+ LoRAMoE [9]	$84.66 \!\pm\! 0.8$	$75.06 {\pm} 0.8$	$90.54 {\pm} 0.6$	$58.59 \!\pm\! 1.1$	$88.67{\pm0.8}$	$88.64 {\pm} 0.9$	$88.04 {\pm} 0.7$	$89.23 {\pm} 0.4$	$64.73 \!\pm\! 1.6$	$64.19 \!\pm\! 1.4$	$59.80 {\pm} 1.3$	$67.58{\pm}1.6$
+ DaedCmd	86.72 ± 0.4	76.48 ± 1.2	91.99 ±0.2	60.98 ±1.3	90.46 ±0.2	90.45 ± 0.2	90.19 ±0.3	90.72 ± 0.1	68.08 ±1.8	67.36 ±1.5	63.65 ±1.3	71.07 ±1.9
MCAN [40]	84.54 ±1.9	73.31±0.8	90.87 ± 0.4	60.19 ±1.3	87.71±1.0	87.61±1.0	86.47±1.3	88.75 ± 0.8	62.98 ±2.0	60.58 ± 1.2	58.27 ± 1.4	68.90 ±2.1
+ EWC [12, 21]	$85.21 {\pm} 0.8$	$73.44 {\pm} 1.2$	$90.84{\pm}0.9$	$57.40{\pm}2.2$	$88.40 \!\pm\! 0.6$	$88.38 \!\pm\! 0.6$	$87.98 \!\pm\! 0.6$	$88.79 {\pm} 0.6$	$64.37 \!\pm\! 1.0$	$64.26{\pm0.6}$	$60.59 \!\pm\! 1.3$	$66.98 {\pm} 2.1$
+ Replay [22]	$85.19 {\pm} 0.7$	$73.25 {\pm} 1.0$	$90.72 {\pm} 1.0$	$58.78 \!\pm\! 2.1$	$88.53 \!\pm\! 0.7$	$88.51 {\pm} 0.7$	$87.97{\pm0.9}$	$89.05 {\pm} 0.7$	$64.46 \!\pm\! 1.0$	$64.01 {\pm} 1.3$	$60.02{\pm}1.4$	67.01 ± 1.3
+ LoRAMoE [9]	$84.88 \!\pm\! 0.8$	$74.38{\pm0.6}$	90.89 ± 0.5	$59.30 {\pm} 0.8$	$87.99 {\pm} 0.7$	$87.94 {\pm} 0.7$	$87.17{\pm0.8}$	$88.70 {\pm} 0.6$	$64.64 {\pm} 1.4$	$64.63 \!\pm\! 1.3$	$60.62{\pm}1.3$	$67.68{\pm}2.0$
+ DaedCmd	86.37 ± 0.7	$\textbf{76.33} {\pm} 0.8$	91.74 ±0.5	60.91 ±1.3	90.10 ±0.8	90.07 ±0.8	89.58 ±0.9	90.58 ±0.7	67.43 ±0.9	66.99 ±0.9	63.81 ±1.3	71.18 ±1.3
CAFE [3]	84.03 ± 1.3	74.46 ± 0.8	90.09 ± 1.0	59.21 ±1.5	87.81±1.0	87.75 ± 1.0	86.94 ± 1.2	88.55 ± 0.8	61.77 ±1.5	60.96 ±1.3	58.62 ± 1.5	66.31 ±2.0
+ EWC [12, 21]	$84.63 \!\pm\! 1.2$	$75.30{\pm}0.8$	$90.48{\pm}0.9$	$60.13{\pm}0.9$	$88.50 \!\pm\! 1.0$	$88.42 {\pm} 1.1$	$87.43 \!\pm\! 1.3$	$89.40 {\pm} 0.8$	$63.83 \!\pm\! 1.2$	$63.19 \!\pm\! 1.7$	$59.30 \!\pm\! 1.5$	$67.07{\pm}1.8$
+ Replay [22]	$84.59 \!\pm\! 1.0$	$74.65{\pm}1.4$	90.54 ± 0.9	$59.76 \!\pm\! 1.8$	$88.03 \!\pm\! 0.5$	$88.01 {\pm} 0.5$	$87.55{\pm}0.6$	$88.47 {\pm} 0.5$	$65.06 \!\pm\! 1.2$	$64.75 \!\pm\! 1.0$	61.67 ± 1.7	$67.84{\pm}1.9$
+ LoRAMoE [9]	$84.87 \!\pm\! 0.7$	$74.00 {\pm} 1.6$	90.60 ± 0.3	59.67 ± 2.5	$88.60 \!\pm\! 0.6$	$88.52 {\pm} 0.6$	$87.53{\pm}0.8$	$89.50 {\pm} 0.9$	$64.53{\pm}1.8$	$62.08 \!\pm\! 1.4$	$60.26{\pm}1.5$	$67.89{\pm}1.5$
+ DaedCmd	86.67 \pm 0.2	76.50 ± 0.4	91.96 ±0.1	61.05 ±0.8	90.00 ±0.4	89.98 ±0.4	89.53 ±0.5	90.43 ±0.4	67.99 ±1.3	67.21 ±1.5	62.90 ±1.2	71.52 ±1.6
BMR [42]	$83.92 \!\pm\! 1.6$	$73.64{\pm}1.0$	90.60 ± 1.2	$58.10 {\pm} 2.0$	$87.54 {\pm} 0.8$	$87.50 {\pm} 0.8$	86.84 ± 0.9	$88.16 \!\pm\! 0.8$	$62.22 {\pm} 1.2$	61.31 ± 1.2	$58.39 {\pm} 1.8$	$67.24{\pm}1.9$
+ EWC [12, 21]	$84.45 \!\pm\! 1.0$	$74.58{\pm}0.9$	$90.22 {\pm 0.8}$	59.63 ± 2.2	$88.40 \!\pm\! 0.8$	$88.34 {\pm} 0.8$	$87.52{\pm0.6}$	$89.16 \!\pm\! 1.0$	$63.49 {\pm} 1.5$	$63.23 \!\pm\! 1.4$	$60.12{\pm}1.5$	$66.34 {\pm} 2.0$
+ Replay [22]	$84.63 \!\pm\! 1.4$	$74.28{\pm}1.8$	$90.12 {\pm} 1.1$	59.38 ± 2.5	$87.92 \!\pm\! 1.1$	$87.89 \!\pm\! 1.3$	$87.39 \!\pm\! 1.4$	$88.39 {\pm} 0.7$	$64.13{\pm}1.9$	$62.64{\pm}1.5$	59.76 ± 1.9	$67.52{\pm}1.1$
+ LoRAMoE [9]	84.81 ± 0.9	$74.67{\pm0.8}$	$90.46{\pm}0.8$	$58.87 \!\pm\! 1.8$	$88.26 \!\pm\! 1.5$	$88.20 \!\pm\! 1.5$	$87.37 \!\pm\! 1.5$	$89.03 \!\pm\! 1.5$	$64.10 \!\pm\! 1.7$	$63.58 \!\pm\! 1.6$	$59.21 {\pm} 1.4$	$67.45{\pm}2.2$
+ DaedCmd	86.13 ±0.6	76.31 ±0.7	91.56 ±0.4	61.07 ±1.2	89.86 ±0.8	89.84 ± 0.8	89.47 ± 1.1	90.20 ±0.5	67.36 ±1.3	67.23 ±1.3	66.08 ±1.4	69.38 ±1.5
GAMED [30]	$84.28 \!\pm\! 1.2$	$73.84{\pm}1.1$	90.78 ± 0.9	59.61 ± 2.1	$87.29{\pm0.9}$	$87.24{\pm}0.9$	$87.48 \!\pm\! 1.0$	$87.98{\pm}0.9$	61.90 ± 0.6	$60.88 \!\pm\! 1.4$	59.07 ± 1.7	65.71 ± 1.9
+ EWC [12, 21]	$84.45 \!\pm\! 1.6$	$74.65 {\pm} 1.0$	90.41 ± 1.2	$59.29 \!\pm\! 1.6$	$88.49 {\pm} 0.9$	$88.47{\pm}0.9$	$88.04 {\pm} 1.1$	$88.91 {\pm} 0.8$	$64.73 \!\pm\! 1.7$	$63.34 \!\pm\! 1.3$	$59.22 {\pm} 2.1$	$68.46 \!\pm\! 2.1$
+ Replay [22]	$84.68 \!\pm\! 2.0$	$74.09 {\pm} 0.5$	90.19 ± 1.6	$59.27 \!\pm\! 1.9$	$87.91 {\pm} 0.8$	$87.89 {\pm} 0.8$	$87.47 {\pm} 0.8$	$88.30 \!\pm\! 0.7$	$64.20{\pm}1.9$	$63.55 \!\pm\! 1.7$	59.81 ± 1.0	$67.29{\pm}1.5$
+ LoRAMoE [9]	$84.79 \!\pm\! 0.7$	$74.44 {\pm} 2.2$	90.61 ± 0.9	$59.27 \!\pm\! 1.7$	$88.46 \!\pm\! 0.8$	$88.37 \!\pm\! 0.8$	$87.32 {\pm} 0.6$	$89.02 {\pm} 1.4$	$63.88 \!\pm\! 1.6$	$63.62 \!\pm\! 1.5$	$60.21{\pm}1.8$	66.03 ± 2.1
+ DaedCmd	86.21 ±1.0	76.17 ± 0.7	91.73 ±0.5	60.62 ± 1.0	89.93 ± 0.7	89.90 ±0.7	89.42 ±0.9	90.39 ±0.5	67.21 ±1.7	67.31 ±1.3	62.98 \pm 1.7	70.63 ± 1.5

> DAEDCMD outperform six MMD baselines and three continual learning methods across three datasets

Key Takeaways

- ➤ New Task: We focus on a new task named continual multimodal misinformation detection, and we argue that this task have two primary challenges: past knowledge forgetting and social environment evolving.
- ➤ **Method**: We propose a <u>dynamically adapted MoE</u> module to learn event-shared/specific experts, and dynamically expand them with a Dirichlet processing model. To learn the dynamics of social environment, we design a environmental dynamics model with a neural ordinary differential equation.
- > Experiments: By comparing with baseline models, we have demonstrated the effectiveness of our model.

Github Repo