Remember Past, Anticipate Future: Learning Continual Multimodal Misinformation Detectors Bing Wang, Ximing Li*, Mengzhe Ye, Changchun Li, Bo Fu, Jianfeng Qu, Lin Yuanbo Wu #### Motivation ## New Task Continual Multimodal Misinformation Detection On real-world online social media, **new events always continually emerge**, which renders MMD models trained on offline data ineffective in practical scenarios. ## > Challenge 1: Past Knowledge Forgetting When facing data streams, especially large-scale data, training on new data consistently causes the detection performance of MMD models to decrease on past data. ### > Challenge 2: Social Environment Evolving In online scenarios, the social environment consistently changes over time, which leads to a gradual evolution of the data distributions, especially fake ones. # Our Proposed Method: DAEDCMD To address these two challenges, we propose a new framework **DAEDCMD**, which aims to restore the knowledge of past data and simultaneously learn the dynamic environmental distribution. Specifically, DAEDCMD consists of three following modules. #### **Module 1: Base Feature Extractor** This module extracts **semantic features** of image/text content and fusing them into a multimodal feature. It can be replaced by various SOTA MMD methods, *e.g.*, BMR. ## **Module 2: Dynamically Adapted MoE** Generally, this module aims to alleviate the knowledge forgetting issue by employing an MoE-based model, which consists of a Dirichlet process mixture-based method to dynamically expand experts and an exponential moving average optimized event-shared expert. - > Key Part A: Event-shared & Event-specific Experts - ✓ Specifically, we initialize a event-shared expert and M event-specific experts, and each expert contains a discriminator part and a variational generator part. The discriminator is implemented as a LoRA model and the generator is structured as a variational autoencoder, which includes an encoder and a decoder to reconstruct the input. - > Key Part B: Dirichlet Expert Expanding - Dynamically expand the number of experts $$-\log \rho_{i,m} \propto \begin{cases} -\log \sum \rho_{$$ ### **Module 3: Environmental Dynamics Model** To predict the dynamics, we train a **dynamics model** to predict the environmental distribution (implemented by a **Gaussian distribution**) of future samples, and sample an environmental feature for veracity prediction. $$\begin{split} \mathcal{L}_{DM} = & \frac{1}{K} \int_{0}^{K} \|\hat{\mu}_{\tau} - \mu_{\tau}\|_{2}^{2} + \|\hat{\sigma}_{\tau} - \sigma_{\tau}\|_{2}^{2} dt, \\ \text{s.t.} \quad & H_{\mu_{0}} = \mu_{0} W_{E}, \ H_{\sigma_{0}} = \sigma_{0} W_{E}, \quad \hat{\mu}_{\tau} = H_{\mu_{\tau}} W_{D}, \ \hat{\sigma}_{\tau} = H_{\sigma_{\tau}} W_{D}, \\ & H_{\mu_{\tau}} = H_{\mu_{0}} + \int_{0}^{\tau} \mathcal{G}_{\phi_{\mu}}(H_{\mu}, t) dt, \ H_{\sigma_{\tau}} = H_{\sigma_{0}} + \int_{0}^{\tau} \mathcal{G}_{\phi_{\sigma}}(H_{\sigma}, t) dt, \end{split}$$ ## **Experimental Results** | Model | Dataset: GossipCop [31] | | | | Dataset: Weibo [18] | | | | Dataset: Twitter [1] | | | | |-------------------|-------------------------|----------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|---------------------|------------------------|---------------------| | | Accuracy | F1 | F1 _{real} | F1 _{fake} | Accuracy | F1 | F1 _{real} | F1 _{fake} | Accuracy | F1 | F1 _{real} | F1 _{fake} | | Base [6, 13] | 84.52 ± 0.7 | 73.32±1.3 | 90.61 ±0.5 | 57.02 ±1.8 | 87.98±0.7 | 87.94 ± 0.7 | 87.27 ± 0.8 | 88.60 ± 0.7 | 62.20 ± 1.8 | 62.10 ± 1.8 | 60.98 ±1.9 | 63.22±1.8 | | + EWC [12, 21] | 84.91 ± 0.6 | $74.95 {\pm} 2.2$ | 90.69 ± 0.5 | 58.81 ± 1.6 | $88.46 \!\pm\! 0.5$ | $88.41 {\pm} 0.5$ | $87.64{\pm0.6}$ | $89.19 {\pm} 0.5$ | $64.13 \!\pm\! 1.1$ | $63.73 \!\pm\! 1.4$ | $60.68{\pm}1.8$ | $66.78 \!\pm\! 2.1$ | | + Replay [22] | $84.90 \!\pm\! 1.2$ | $74.81 {\pm} 2.2$ | $90.68 \!\pm\! 0.7$ | $59.00 \!\pm\! 1.7$ | $88.53 \!\pm\! 0.8$ | $88.47 \!\pm\! 0.8$ | $87.65 {\pm} 0.8$ | $89.30 {\pm} 0.9$ | $63.90 \!\pm\! 1.8$ | $63.82 \!\pm\! 1.7$ | $62.58 \!\pm\! 1.2$ | $65.05 \!\pm\! 1.4$ | | + LoRAMoE [9] | $84.89 {\pm} 1.2$ | $74.91{\pm}0.8$ | 90.67 ± 0.9 | $59.18 \!\pm\! 1.4$ | 88.60 ± 0.9 | $88.55 {\pm} 0.9$ | $87.75 \!\pm\! 1.0$ | $89.34 {\pm} 0.9$ | $64.64 {\pm} 1.3$ | $64.56 \!\pm\! 1.3$ | $62.91{\pm}1.8$ | 66.21 ± 1.9 | | + DaedCmd | 86.21 ±0.8 | 76.13 ± 0.5 | 91.64 ±0.6 | 60.63 ±1.0 | 90.07 ±0.6 | 90.05 ±0.6 | 89.67 ±0.6 | 90.50 ±0.6 | 67.66 ±1.7 | 67.44 ±1.5 | 65.64 ±1.3 | 69.24 ±2.0 | | SAFE [46] | 84.31 ±1.4 | 73.93±0.6 | 90.38 ±1.1 | 57.47 ±1.2 | 87.30 ±1.2 | 87.16 ±1.2 | 85.82±1.1 | 88.50 ± 1.1 | 62.46 ±1.8 | 61.69 ±2.4 | 58.49 ± 1.7 | 66.89 ±2.1 | | + EWC [12, 21] | 84.63 ± 0.7 | $74.48 {\pm} 0.7$ | $90.85 {\pm} 1.5$ | $59.12 {\pm} 1.6$ | $87.90 {\pm} 0.9$ | $87.88 \!\pm\! 0.9$ | $87.43{\pm}0.9$ | $88.32 {\pm} 0.8$ | $63.25 \!\pm\! 1.4$ | $62.90 \!\pm\! 1.4$ | 60.33 ± 1.9 | $65.48 {\pm} 1.9$ | | + Replay [22] | 84.81 ± 0.7 | $74.68 {\pm} 1.1$ | $90.54 {\pm} 0.6$ | $58.76 \!\pm\! 2.2$ | $88.67 \!\pm\! 1.0$ | $88.60 \!\pm\! 1.0$ | $87.72 {\pm} 1.0$ | $89.49 {\pm} 1.0$ | $64.01{\pm}0.6$ | $62.73 \!\pm\! 1.2$ | 59.73 ± 2.0 | $67.73 {\pm} 1.9$ | | + LoRAMoE [9] | $84.66 \!\pm\! 0.8$ | $75.06 {\pm} 0.8$ | $90.54 {\pm} 0.6$ | $58.59 \!\pm\! 1.1$ | $88.67{\pm0.8}$ | $88.64 {\pm} 0.9$ | $88.04 {\pm} 0.7$ | $89.23 {\pm} 0.4$ | $64.73 \!\pm\! 1.6$ | $64.19 \!\pm\! 1.4$ | $59.80 {\pm} 1.3$ | $67.58{\pm}1.6$ | | + DaedCmd | 86.72 ± 0.4 | 76.48 ± 1.2 | 91.99 ±0.2 | 60.98 ±1.3 | 90.46 ±0.2 | 90.45 ± 0.2 | 90.19 ±0.3 | 90.72 ± 0.1 | 68.08 ±1.8 | 67.36 ±1.5 | 63.65 ±1.3 | 71.07 ±1.9 | | MCAN [40] | 84.54 ±1.9 | 73.31±0.8 | 90.87 ± 0.4 | 60.19 ±1.3 | 87.71±1.0 | 87.61±1.0 | 86.47±1.3 | 88.75 ± 0.8 | 62.98 ±2.0 | 60.58 ± 1.2 | 58.27 ± 1.4 | 68.90 ±2.1 | | + EWC [12, 21] | $85.21 {\pm} 0.8$ | $73.44 {\pm} 1.2$ | $90.84{\pm}0.9$ | $57.40{\pm}2.2$ | $88.40 \!\pm\! 0.6$ | $88.38 \!\pm\! 0.6$ | $87.98 \!\pm\! 0.6$ | $88.79 {\pm} 0.6$ | $64.37 \!\pm\! 1.0$ | $64.26{\pm0.6}$ | $60.59 \!\pm\! 1.3$ | $66.98 {\pm} 2.1$ | | + Replay [22] | $85.19 {\pm} 0.7$ | $73.25 {\pm} 1.0$ | $90.72 {\pm} 1.0$ | $58.78 \!\pm\! 2.1$ | $88.53 \!\pm\! 0.7$ | $88.51 {\pm} 0.7$ | $87.97{\pm0.9}$ | $89.05 {\pm} 0.7$ | $64.46 \!\pm\! 1.0$ | $64.01 {\pm} 1.3$ | $60.02{\pm}1.4$ | 67.01 ± 1.3 | | + LoRAMoE [9] | $84.88 \!\pm\! 0.8$ | $74.38{\pm0.6}$ | 90.89 ± 0.5 | $59.30 {\pm} 0.8$ | $87.99 {\pm} 0.7$ | $87.94 {\pm} 0.7$ | $87.17{\pm0.8}$ | $88.70 {\pm} 0.6$ | $64.64 {\pm} 1.4$ | $64.63 \!\pm\! 1.3$ | $60.62{\pm}1.3$ | $67.68{\pm}2.0$ | | + DaedCmd | 86.37 ± 0.7 | $\textbf{76.33} {\pm} 0.8$ | 91.74 ±0.5 | 60.91 ±1.3 | 90.10 ±0.8 | 90.07 ±0.8 | 89.58 ±0.9 | 90.58 ±0.7 | 67.43 ±0.9 | 66.99 ±0.9 | 63.81 ±1.3 | 71.18 ±1.3 | | CAFE [3] | 84.03 ± 1.3 | 74.46 ± 0.8 | 90.09 ± 1.0 | 59.21 ±1.5 | 87.81±1.0 | 87.75 ± 1.0 | 86.94 ± 1.2 | 88.55 ± 0.8 | 61.77 ±1.5 | 60.96 ±1.3 | 58.62 ± 1.5 | 66.31 ±2.0 | | + EWC [12, 21] | $84.63 \!\pm\! 1.2$ | $75.30{\pm}0.8$ | $90.48{\pm}0.9$ | $60.13{\pm}0.9$ | $88.50 \!\pm\! 1.0$ | $88.42 {\pm} 1.1$ | $87.43 \!\pm\! 1.3$ | $89.40 {\pm} 0.8$ | $63.83 \!\pm\! 1.2$ | $63.19 \!\pm\! 1.7$ | $59.30 \!\pm\! 1.5$ | $67.07{\pm}1.8$ | | + Replay [22] | $84.59 \!\pm\! 1.0$ | $74.65{\pm}1.4$ | 90.54 ± 0.9 | $59.76 \!\pm\! 1.8$ | $88.03 \!\pm\! 0.5$ | $88.01 {\pm} 0.5$ | $87.55{\pm}0.6$ | $88.47 {\pm} 0.5$ | $65.06 \!\pm\! 1.2$ | $64.75 \!\pm\! 1.0$ | 61.67 ± 1.7 | $67.84{\pm}1.9$ | | + LoRAMoE [9] | $84.87 \!\pm\! 0.7$ | $74.00 {\pm} 1.6$ | 90.60 ± 0.3 | 59.67 ± 2.5 | $88.60 \!\pm\! 0.6$ | $88.52 {\pm} 0.6$ | $87.53{\pm}0.8$ | $89.50 {\pm} 0.9$ | $64.53{\pm}1.8$ | $62.08 \!\pm\! 1.4$ | $60.26{\pm}1.5$ | $67.89{\pm}1.5$ | | + DaedCmd | 86.67 \pm 0.2 | 76.50 ± 0.4 | 91.96 ±0.1 | 61.05 ±0.8 | 90.00 ±0.4 | 89.98 ±0.4 | 89.53 ±0.5 | 90.43 ±0.4 | 67.99 ±1.3 | 67.21 ±1.5 | 62.90 ±1.2 | 71.52 ±1.6 | | BMR [42] | $83.92 \!\pm\! 1.6$ | $73.64{\pm}1.0$ | 90.60 ± 1.2 | $58.10 {\pm} 2.0$ | $87.54 {\pm} 0.8$ | $87.50 {\pm} 0.8$ | 86.84 ± 0.9 | $88.16 \!\pm\! 0.8$ | $62.22 {\pm} 1.2$ | 61.31 ± 1.2 | $58.39 {\pm} 1.8$ | $67.24{\pm}1.9$ | | + EWC [12, 21] | $84.45 \!\pm\! 1.0$ | $74.58{\pm}0.9$ | $90.22 {\pm 0.8}$ | 59.63 ± 2.2 | $88.40 \!\pm\! 0.8$ | $88.34 {\pm} 0.8$ | $87.52{\pm0.6}$ | $89.16 \!\pm\! 1.0$ | $63.49 {\pm} 1.5$ | $63.23 \!\pm\! 1.4$ | $60.12{\pm}1.5$ | $66.34 {\pm} 2.0$ | | + Replay [22] | $84.63 \!\pm\! 1.4$ | $74.28{\pm}1.8$ | $90.12 {\pm} 1.1$ | 59.38 ± 2.5 | $87.92 \!\pm\! 1.1$ | $87.89 \!\pm\! 1.3$ | $87.39 \!\pm\! 1.4$ | $88.39 {\pm} 0.7$ | $64.13{\pm}1.9$ | $62.64{\pm}1.5$ | 59.76 ± 1.9 | $67.52{\pm}1.1$ | | + LoRAMoE [9] | 84.81 ± 0.9 | $74.67{\pm0.8}$ | $90.46{\pm}0.8$ | $58.87 \!\pm\! 1.8$ | $88.26 \!\pm\! 1.5$ | $88.20 \!\pm\! 1.5$ | $87.37 \!\pm\! 1.5$ | $89.03 \!\pm\! 1.5$ | $64.10 \!\pm\! 1.7$ | $63.58 \!\pm\! 1.6$ | $59.21 {\pm} 1.4$ | $67.45{\pm}2.2$ | | + DaedCmd | 86.13 ±0.6 | 76.31 ±0.7 | 91.56 ±0.4 | 61.07 ±1.2 | 89.86 ±0.8 | 89.84 ± 0.8 | 89.47 ± 1.1 | 90.20 ±0.5 | 67.36 ±1.3 | 67.23 ±1.3 | 66.08 ±1.4 | 69.38 ±1.5 | | GAMED [30] | $84.28 \!\pm\! 1.2$ | $73.84{\pm}1.1$ | 90.78 ± 0.9 | 59.61 ± 2.1 | $87.29{\pm0.9}$ | $87.24{\pm}0.9$ | $87.48 \!\pm\! 1.0$ | $87.98{\pm}0.9$ | 61.90 ± 0.6 | $60.88 \!\pm\! 1.4$ | 59.07 ± 1.7 | 65.71 ± 1.9 | | + EWC [12, 21] | $84.45 \!\pm\! 1.6$ | $74.65 {\pm} 1.0$ | 90.41 ± 1.2 | $59.29 \!\pm\! 1.6$ | $88.49 {\pm} 0.9$ | $88.47{\pm}0.9$ | $88.04 {\pm} 1.1$ | $88.91 {\pm} 0.8$ | $64.73 \!\pm\! 1.7$ | $63.34 \!\pm\! 1.3$ | $59.22 {\pm} 2.1$ | $68.46 \!\pm\! 2.1$ | | + Replay [22] | $84.68 \!\pm\! 2.0$ | $74.09 {\pm} 0.5$ | 90.19 ± 1.6 | $59.27 \!\pm\! 1.9$ | $87.91 {\pm} 0.8$ | $87.89 {\pm} 0.8$ | $87.47 {\pm} 0.8$ | $88.30 \!\pm\! 0.7$ | $64.20{\pm}1.9$ | $63.55 \!\pm\! 1.7$ | 59.81 ± 1.0 | $67.29{\pm}1.5$ | | + LoRAMoE [9] | $84.79 \!\pm\! 0.7$ | $74.44 {\pm} 2.2$ | 90.61 ± 0.9 | $59.27 \!\pm\! 1.7$ | $88.46 \!\pm\! 0.8$ | $88.37 \!\pm\! 0.8$ | $87.32 {\pm} 0.6$ | $89.02 {\pm} 1.4$ | $63.88 \!\pm\! 1.6$ | $63.62 \!\pm\! 1.5$ | $60.21{\pm}1.8$ | 66.03 ± 2.1 | | + DaedCmd | 86.21 ±1.0 | 76.17 ± 0.7 | 91.73 ±0.5 | 60.62 ± 1.0 | 89.93 ± 0.7 | 89.90 ±0.7 | 89.42 ±0.9 | 90.39 ±0.5 | 67.21 ±1.7 | 67.31 ±1.3 | 62.98 \pm 1.7 | 70.63 ± 1.5 | > DAEDCMD outperform six MMD baselines and three continual learning methods across three datasets ## Key Takeaways - ➤ New Task: We focus on a new task named continual multimodal misinformation detection, and we argue that this task have two primary challenges: past knowledge forgetting and social environment evolving. - ➤ **Method**: We propose a <u>dynamically adapted MoE</u> module to learn event-shared/specific experts, and dynamically expand them with a Dirichlet processing model. To learn the dynamics of social environment, we design a environmental dynamics model with a neural ordinary differential equation. - > Experiments: By comparing with baseline models, we have demonstrated the effectiveness of our model. Github Repo