

# Why Misinformation is Created? Detecting them by Integrating Intent Features

Authors: Bing Wang, Ximing Li, Changchun Li, Bo Fu, Songwen Pei, Shengsheng Wang









求實創新 勵志圖強 Jilin University

## **Background**

## Social media platforms are inevitably full of misinformation, causing damage

Over-the-counter cold and cough medications are being pulled from drugstore shelves in an effort to start the "next plandemic" or force people to get the COVID-19 vaccine.



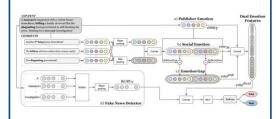
COVID-19 vaccines are safe for people who have existing health conditions, including conditions that have a higher risk of getting serious illness with COVID-19.





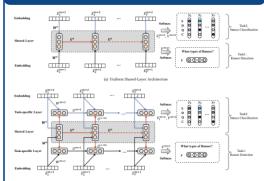


#### **Previous Works on MD**


The cutting-edge MD methods extracting more discriminative features by incorporating influential aspects from psychology and sociology perspectives

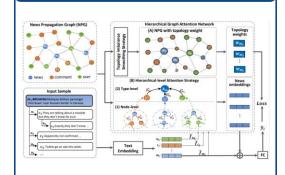







#### **Emotion Feature**




Zhang, Xueyao, et al. "Mining dual emotion for fake news detection." *Proceedings of the web conference* 2021. 2021.

#### **Stance Feature**



Ma, Jing, et al. "Detect rumor and stance jointly by neural multi-task learning." Companion proceedings of the the web conference 2018. 2018.

#### **Propagation Structure**



Gao, Li, et al. "Topology imbalance and relation inauthenticity aware hierarchical graph attention networks for fake news detection." ACL 2022.



Misinformation is created by specific intents, which are often negative, and harmful

Real information is more objective with the **straightforward intent** of sharing

Over-the-counter cold and cough medications are being pulled from drugstore shelves in an effort to start the "next plandemic" or force people to get the COVID-19 vaccine.





Intent: conspiracy theories

COVID-19 vaccines are safe for people who have existing health conditions, including conditions that have a higher risk of getting serious illness with COVID-19.





Intent:
popularize
commonsense



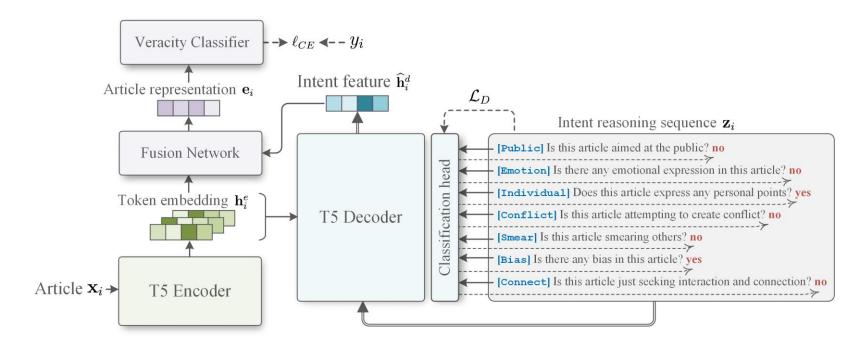
Misinformation is created by specific intents, which are often negative, and harmful

Real information is more objective with the straightforward intent of sharing

Over-the-counter cold and cough medication are being pulled from declaration about a few declarations.

Reason the intent of a

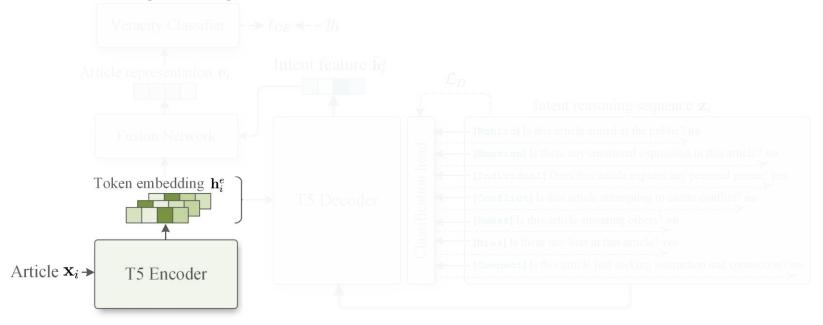
Reason the intent of articles and form the corresponding intent features


covidence covidence covidence covidence covidence conditions are safe for people who have existing health conditions, including conditions that have a higher risk of getting serious illness with COVID-19.



Intent:
popularize



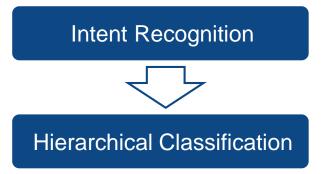

- **✓** Four components of DM-INTER:
  - LM encoder, LM decoder, fusion network, veracity classifier





#### 1 LM encoder

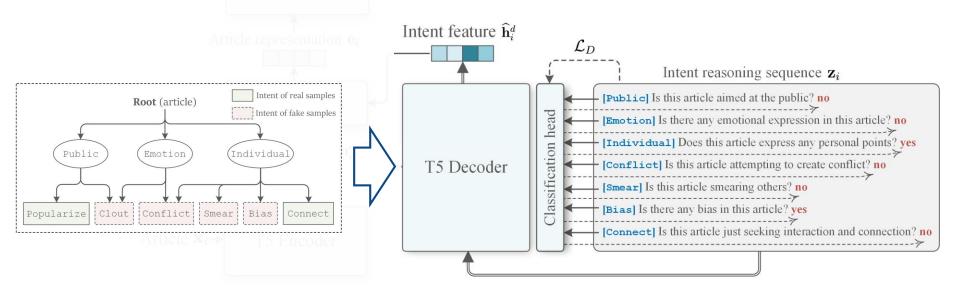
Specified by the **T5 encoder** extracts the hidden token embeddings of a given article.






#### 2 LM decoder

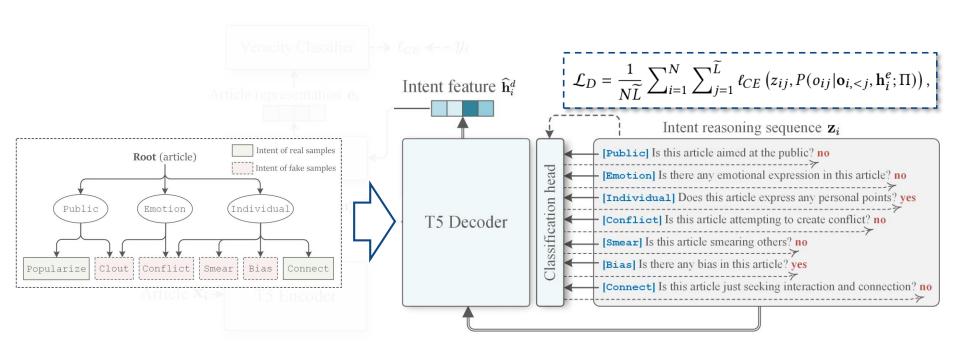
To reason the potential intent, we refer to some psychological concepts and present an intent hierarchy







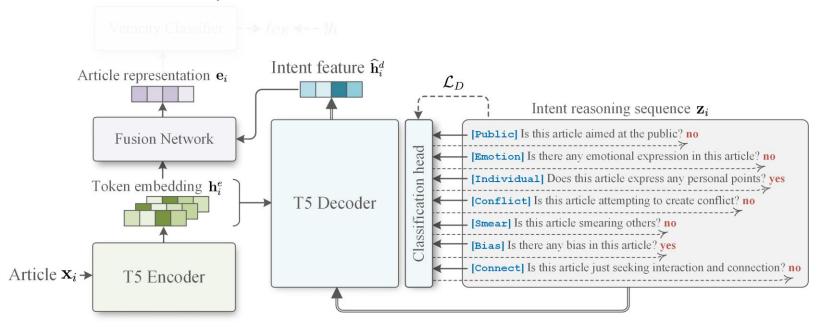

## 2 LM decoder


- ✓ We progressively prompt a **T5 decoder** to reason one or multiple paths on the hierarchy, and obtain a textual intent reasoning sequence
- ✓ the T5 decoder also outputs the token embeddings, and directly adopt the average pooled representation, which can be seen as the intent feature



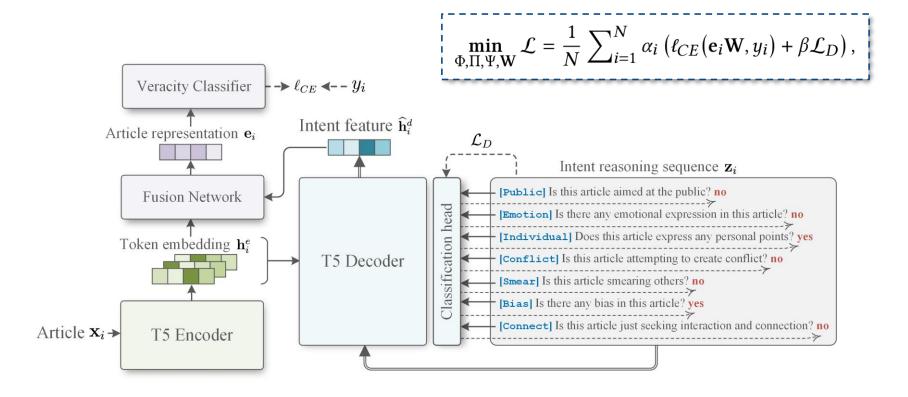


#### LM decoder


✓ We involve training the decoder with **the self-training method**, to enable the decoder to generate more accurate answers






## **Fusion network**

We adopt a **multi-head attention network** to fuse them to obtain the overall article representation





4 Veracity classifier Predict the final veracity predictions



**4 Veracity classifier** Predict the final veracity predictions

$$\min_{\Phi,\Pi,\Psi,\mathbf{W}} \mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \alpha_{i} (\ell_{CE}(\mathbf{e}_{i}\mathbf{W}, y_{i}) + \beta \mathcal{L}_{D}),$$

## Adaptive Weight Assigning

## ✓ Error propagation

If an intent in the intent hierarchy is reasoned incorrectly, then its child intents will also be incorrect.

$$\alpha_i^E = \frac{T}{\sum_{t=1}^T \|a_{it} - \widehat{a}_{it}\|_2^2}.$$

# √ Veracity inconsistency

Each intent corresponds to a veracity label, when the reasoned intent of an article fails to align with its veracity label, indicating an incorrect reasoning for this sample

$$\alpha_i^V = \begin{cases} 1, & \text{veracity consistency,} \\ 0, & \text{veracity inconsistency.} \end{cases}$$



## ✓ Experimental Settings

3 datasets, 5 baseline models, and 7 metrics

#### 3 Datasets

GossipCop, PolitiFact, and Snopes

| Dataset    | # T1  | rain  | # Vali | dation | # Test |       |
|------------|-------|-------|--------|--------|--------|-------|
|            | Fake  | Real  | Fake   | Real   | Fake   | Real  |
| GossipCop  | 2,024 | 5,039 | 604    | 1,774  | 601    | 1,758 |
| PolitiFact | 1,224 | 1,344 | 170    | 186    | 307    | 337   |
| Snopes     | 2,288 | 838   | 317    | 116    | 572    | 210   |

#### **5 Baseline Models**

- BERT (bert-base-uncased)
- **2** T5 (*T5-base*)
- 3 EANN learns event-invariant features
- 4 BERT-EMO introduces emotional signals
- **5** CED generate intra/inter category features



# Evaluation: Performance Comparison

| Method                                   | Macro F1             | Accuracy             | Precision             | Recall               | F1 <sub>real</sub>  | F1 <sub>fake</sub>   | AUC                |
|------------------------------------------|----------------------|----------------------|-----------------------|----------------------|---------------------|----------------------|--------------------|
|                                          |                      | Dat                  | taset: Gossip(        | Сор                  |                     |                      |                    |
| BERT <sub>base</sub> [4] ( $\sim 110M$ ) | $78.23 \pm 0.45$     | $83.78 \!\pm\! 0.80$ | $79.00 \!\pm\! 1.45$  | $77.69 \pm 0.59$     | $89.21 \pm 0.69$    | $67.24 \pm 0.45$     | $86.58 \pm 0.33$   |
| BERT + EANN [46]                         | $78.59 \!\pm\! 0.84$ | $84.47 \pm 0.66$     | $80.37 \pm 1.46$      | $77.42 \pm 1.36$     | $89.80 \pm 0.55$    | $67.39 \pm 1.59$     | $86.89 \pm 0.45$   |
| BERT + BERT-EMO [57]                     | $78.63 \pm 0.47$     | $84.62 \pm 0.39$     | $79.75 \pm 0.93$      | $77.10 \!\pm\! 1.01$ | $89.83 \pm 0.59$    | $67.23 \!\pm\! 1.03$ | $86.75 \pm 0.37$   |
| BERT + CED [52]                          | $78.33 \pm 0.40$     | $83.77{\pm0.68}$     | $78.85 {\pm} 1.26$    | $77.94 \pm 0.25$     | $89.17 \pm 0.57$    | $67.49 \!\pm\! 0.25$ | $86.31 \pm 0.46$   |
| T5 <sub>base</sub> [30] (~220M)          | 78.44±0.33           | 84.56±0.27           | 80.61±0.50            | 76.92±0.33           | 89.93±0.20          | $66.96 \pm 0.51$     | 87.56±0.36         |
| + DM-INTER (ours)                        | 79.45±0.62*          | 85.33±0.49*          | $81.92 \pm 1.08^*$    | $77.82 \pm 0.88^*$   | $90.44 \pm 0.39$    | 68.46±1.12*          | $87.46 \pm 0.12$   |
| T5 + EANN [46]                           | $78.60 \pm 0.35$     | $84.40 \pm 0.18$     | $80.06 \pm 0.51$      | $77.51 \pm 0.74$     | $89.74 \pm 0.18$    | $67.47 \pm 0.77$     | $87.49 \pm 0.54$   |
| + DM-INTER (ours)                        | $79.73 \pm 0.66$ *   | $85.59 \pm 0.48^*$   | $82.38 \pm 0.91$ *    | $77.96 \pm 0.85$     | $90.63 \pm 0.66^*$  | 68.83±1.00*          | $87.97 \pm 0.22$   |
| T5 + BERT-EMO [57]                       | $78.46 \pm 0.39$     | $84.48 \pm 0.26$     | $80.45 \pm 0.89$      | $77.11 \pm 1.08$     | $89.84 \pm 0.31$    | $67.08 \!\pm\! 1.01$ | $87.53 \pm 0.36$   |
| + DM-INTER (ours)                        | $79.55 \pm 0.53^*$   | $85.19 \pm 0.26^*$   | $81.34 \pm 0.63^*$    | $78.26 \pm 1.01^*$   | $90.29 \pm 0.21$    | 68.81±1.07*          | 88.10±0.15*        |
| T5 + CED [52]                            | $78.83 \pm 0.64$     | $84.49 \pm 0.52$     | $80.09 \pm 0.89$      | $77.86 \!\pm\! 0.82$ | $89.77 \pm 0.39$    | $67.90 \!\pm\! 1.04$ | $87.57 \pm 0.36$   |
| + DM-INTER (ours)                        | 79.78±0.60*          | $85.50 \pm 0.38$ *   | $82.01 \pm 0.86^*$    | $78.24 \pm 0.91$     | $90.53 \pm 0.27^*$  | $69.03 \pm 1.08$ *   | $88.01 \pm 0.47$   |
|                                          |                      | Da                   | taset: <i>PolitiF</i> | act                  |                     |                      |                    |
| BERT <sub>base</sub> [4] ( $\sim 110M$ ) | $59.46 \pm 0.98$     | $60.02 \pm 0.73$     | $60.26 \pm 0.91$      | $59.82 {\pm} 0.88$   | $62.38 {\pm} 1.58$  | $59.55 \pm 1.02$     | $64.28 \pm 1.22$   |
| BERT + CED [52]                          | $60.11 \pm 0.59$     | $60.33 \pm 0.85$     | $60.55 \pm 0.93$      | $60.35 \pm 0.70$     | $61.08 \pm 1.41$    | $59.16 \!\pm\! 1.84$ | $64.71 \pm 0.88$   |
| T5 <sub>base</sub> [30] (~220M)          | <b>59.09</b> ±1.32   | <b>59.53</b> ±0.98   | $59.71 \pm 0.92$      | <b>59.42</b> ±1.13   | 61.23±1.70          | $56.95 \pm 1.83$     | 63.81±1.14         |
| + DM-INTER (ours)                        | 60.31±0.89*          | $60.67 {\pm} 0.78$ * | $60.72 \pm 0.86^*$    | $60.47 \pm 0.86^*$   | $63.22 \pm 1.40^*$  | $57.40 \pm 1.31$     | 64.98±1.10*        |
| T5 + CED [52]                            | $59.19 \pm 0.97$     | $59.43 \pm 0.89$     | $59.39 \pm 0.97$      | $59.28 \pm 0.89$     | $61.70 \pm 1.37$    | $56.69 \pm 1.27$     | $63.63 \pm 0.85$   |
| + DM-INTER (ours)                        | $61.27 \pm 1.11^*$   | $61.42 \pm 0.93$ *   | $61.41 \pm 0.82^*$    | <b>61.33</b> ±0.74*  | $63.09 \pm 1.43^*$  | $59.45 \pm 0.71^*$   | $65.73 \pm 1.16^*$ |
|                                          |                      | D                    | ataset: Snope         | ?s                   |                     |                      |                    |
| BERT <sub>base</sub> [4] ( $\sim 110M$ ) | $62.28 \pm 1.21$     | $71.55 \pm 1.57$     | $63.27 \pm 1.32$      | $62.05 \pm 1.22$     | $43.67 \pm 1.66$    | $80.89 \pm 1.61$     | $69.48 \pm 1.32$   |
| BERT + CED [52]                          | $62.68 \pm 0.78$     | $71.91 \pm 1.44$     | $63.59 \pm 1.28$      | $62.29 \pm 0.94$     | $44.17 \pm 0.97$    | $81.20 \pm 1.41$     | $70.42 \pm 0.74$   |
| T5 <sub>base</sub> [30] (~220M)          | 62.51±0.91           | $72.19 \pm 1.26$     | $63.73 \pm 1.11$      | 62.03±1.10           | 43.51±1.44          | 81.52±1.26           | 70.70±0.27         |
| + DM-INTER (ours)                        | $64.21 \pm 0.82^*$   | $73.85 \pm 1.54^*$   | 66.08±0.95*           | 63.56±1.17*          | <b>45.71</b> ±1.53* | 82.72±1.04*          | $70.59 \pm 0.59$   |
| T5 + CED [52]                            | $62.70 \pm 0.28$     | $72.32 \pm 1.43$     | $63.23 \pm 1.00$      | $62.52 \pm 0.45$     | $44.82 \pm 1.31$    | $80.58 \pm 1.47$     | $69.15 \pm 0.90$   |
| + DM-INTER (ours)                        | <b>64.51</b> ±1.05*  | <b>74.14</b> ±0.66*  | <b>66.21</b> ±1.72*   | 63.80±0.80*          | <b>46.35</b> ±1.04* | 82.67±1.05*          | 70.44±1.08*        |

#### **Observation 1**

In general, this paper proposes a plug-and-play method that consistently enhances the performance of its baseline models across almost all settings.



## Evaluation: Performance Comparison

| Method                                   | Macro F1             | Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Precision                             | Recall                              | F1 <sub>real</sub>  | F1 <sub>fake</sub>   | AUC                  |
|------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|---------------------|----------------------|----------------------|
|                                          |                      | Dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | taset: Gossip(                        | Сор                                 |                     |                      |                      |
| BERT <sub>base</sub> [4] ( $\sim 110M$ ) | $78.23 \pm 0.45$     | $83.78 \pm 0.80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $79.00 \!\pm\! 1.45$                  | $77.69 \pm 0.59$                    | $89.21 \pm 0.69$    | $67.24 \pm 0.45$     | $86.58 \pm 0.33$     |
| BERT + EANN [46]                         | $78.59 \!\pm\! 0.84$ | $84.47{\pm0.66}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $80.37 {\pm} 1.46$                    | $77.42 \pm 1.36$                    | $89.80 \pm 0.55$    | $67.39 \pm 1.59$     | $86.89 \pm 0.45$     |
| BERT + BERT-EMO [57]                     | $78.63 \!\pm\! 0.47$ | $84.62 \pm 0.39$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $79.75 \pm 0.93$                      | $77.10 \!\pm\! 1.01$                | $89.83 \pm 0.59$    | $67.23 \!\pm\! 1.03$ | $86.75 \pm 0.37$     |
| BERT + CED [52]                          | $78.33 \!\pm\! 0.40$ | $83.77 \pm 0.68$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $78.85 {\pm} 1.26$                    | $77.94 {\pm} 0.25$                  | $89.17 \pm 0.57$    | $67.49 {\pm} 0.25$   | $86.31 \pm 0.46$     |
| T5 <sub>base</sub> [30] (~220M)          | 78.44±0.33           | 84.56±0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80.61±0.50                            | $76.92 \pm 0.33$                    | 89.93±0.20          | 66.96±0.51           | 87.56±0.36           |
| + DM-INTER (ours)                        | $79.45 \pm 0.62^*$   | $85.33 \pm 0.49$ *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $81.92 {\pm} 1.08^{\color{red}\star}$ | $77.82{\pm0.88}^{\color{red}\star}$ | $90.44 \pm 0.39$    | <b>68.46</b> ±1.12*  | $87.46 \pm 0.12$     |
| T5 + EANN [46]                           | $78.60 \pm 0.35$     | $84.40 \!\pm\! 0.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $80.06 \pm 0.51$                      | $77.51 \pm 0.74$                    | $89.74 \pm 0.18$    | $67.47 \pm 0.77$     | $87.49 \pm 0.54$     |
| + DM-INTER (ours)                        | $79.73 \pm 0.66$ *   | $85.59 \pm 0.48^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $82.38 \pm 0.91^*$                    | $77.96 \!\pm\! 0.85$                | $90.63 \pm 0.66^*$  | 68.83±1.00*          | $87.97 \pm 0.22$     |
| T5 + BERT-EMO [57]                       | $78.46 \pm 0.39$     | $84.48 \pm 0.26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $80.45 \pm 0.89$                      | $77.11 \pm 1.08$                    | $89.84 \pm 0.31$    | $67.08 \!\pm\! 1.01$ | $87.53 \pm 0.36$     |
| + Dm-inter (ours)                        | $79.55 \pm 0.53^*$   | $85.19 \pm 0.26$ *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $81.34 \pm 0.63^*$                    | $78.26 \pm 1.01^*$                  | $90.29 \pm 0.21$    | 68.81±1.07*          | $88.10 \pm 0.15$ *   |
| T5 + CED [52]                            | $78.83 \pm 0.64$     | $84.49 \pm 0.52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $80.09 \pm 0.89$                      | $77.86 \!\pm\! 0.82$                | $89.77 \pm 0.39$    | $67.90 \!\pm\! 1.04$ | $87.57 \pm 0.36$     |
| + DM-INTER (ours)                        | $79.78 \pm 0.60$ *   | $85.50 \!\pm\! 0.38^{\color{red}\star}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $82.01 \pm 0.86^*$                    | $78.24 {\pm} 0.91$                  | $90.53 \pm 0.27^*$  | $69.03 \pm 1.08^*$   | $88.01 \pm 0.47$     |
|                                          |                      | Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | taset: <i>PolitiF</i>                 | act                                 |                     |                      |                      |
| $BERT_{base}$ [4] (~110M)                | $59.46 \pm 0.98$     | $60.02 \pm 0.73$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $60.26 \pm 0.91$                      | $59.82{\pm0.88}$                    | $62.38 {\pm} 1.58$  | $59.55 \pm 1.02$     | $64.28 \!\pm\! 1.22$ |
| BERT + CED [52]                          | $60.11 \pm 0.59$     | $60.33 \pm 0.85$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $60.55 \pm 0.93$                      | $60.35 \pm 0.70$                    | $61.08 \pm 1.41$    | $59.16 \!\pm\! 1.84$ | $64.71 \pm 0.88$     |
| T5 <sub>base</sub> [30] (~220M)          | 59.09±1.32           | <b>59.53</b> ±0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59.71±0.92                            | 59.42±1.13                          | 61.23±1.70          | <b>56.95</b> ±1.83   | 63.81±1.14           |
| + DM-INTER (ours)                        | 60.31±0.89*          | $60.67 {\pm} 0.78$ *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $60.72 \pm 0.86^*$                    | $60.47 \pm 0.86^*$                  | $63.22 \pm 1.40^*$  | $57.40 \!\pm\! 1.31$ | <b>64.98</b> ±1.10*  |
| T5 + CED [52]                            | $59.19 \pm 0.97$     | $59.43 \pm 0.89$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $59.39 \pm 0.97$                      | $59.28 \!\pm\! 0.89$                | $61.70 \pm 1.37$    | $56.69 \pm 1.27$     | $63.63 \pm 0.85$     |
| + Dm-inter (ours)                        | $61.27 \pm 1.11^*$   | $61.42 {\pm 0.93}^{\color{red} \color{red} \color{blue} b$ | $61.41 \pm 0.82^*$                    | <b>61.33</b> ±0.74*                 | $63.09 \pm 1.43^*$  | $59.45 \pm 0.71^*$   | $65.73 \pm 1.16^*$   |
|                                          |                      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ataset: Snope                         | es .                                |                     |                      |                      |
| BERT <sub>base</sub> [4] ( $\sim 110M$ ) | $62.28 \pm 1.21$     | $71.55 \pm 1.57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $63.27 \pm 1.32$                      | $62.05 \pm 1.22$                    | $43.67 {\pm} 1.66$  | $80.89 \pm 1.61$     | $69.48 \pm 1.32$     |
| BERT + CED [52]                          | $62.68 \pm 0.78$     | $71.91 \pm 1.44$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $63.59 {\pm} 1.28$                    | $62.29 \pm 0.94$                    | $44.17 \pm 0.97$    | $81.20 \pm 1.41$     | $70.42 \pm 0.74$     |
| T5 <sub>base</sub> [30] (~220M)          | 62.51±0.91           | $72.19 \pm 1.26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $63.73 \pm 1.11$                      | 62.03±1.10                          | 43.51±1.44          | 81.52±1.26           | 70.70±0.27           |
| + DM-INTER (ours)                        | $64.21 \pm 0.82^*$   | $73.85 \pm 1.54^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66.08±0.95*                           | 63.56±1.17*                         | <b>45.71</b> ±1.53* | $82.72 \pm 1.04^*$   | $70.59 \pm 0.59$     |
| T5 + CED [52]                            | $62.70{\pm}0.28$     | $72.32 \pm 1.43$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $63.23 \pm 1.00$                      | $62.52 \pm 0.45$                    | $44.82 \pm 1.31$    | $80.58 \pm 1.47$     | $69.15 \pm 0.90$     |
| + DM-INTER (ours)                        | 64.51±1.05*          | <b>74.14</b> ±0.66*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>66.21</b> ±1.72*                   | 63.80±0.80*                         | $46.35 \pm 1.04^*$  | 82.67±1.05*          | $70.44 \pm 1.08$ *   |

## **Observation 2**

The average improvement over the baseline models is

Snopes>PolitiFact>GossipCop

This phenomenon indicates that the positive impact of DM-INTER is more pronounced in scenarios with limited training data



# Evaluation: Ablative Study

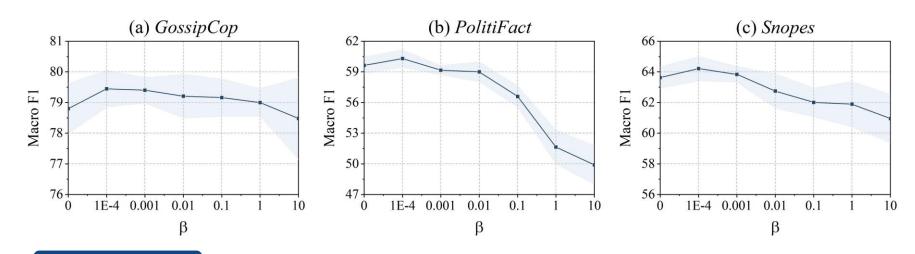
| Method                  | F1    | Acc.     | P.     | R.           | F1 <sub>real</sub> | F1 <sub>fake</sub> |  |  |  |
|-------------------------|-------|----------|--------|--------------|--------------------|--------------------|--|--|--|
| Dataset: GossipCop      |       |          |        |              |                    |                    |  |  |  |
| T5 <sub>base</sub> [30] | 78.44 | 84.56    | 80.61  | 76.92        | 89.93              | 66.96              |  |  |  |
| + DM-INTER              | 79.45 | 85.33    | 81.92  | 77.82        | 90.44              | 68.46              |  |  |  |
| w/o $\mathcal{L}_D$     | 78.80 | 84.56    | 80.34  | 77.65        | 89.85              | 67.75              |  |  |  |
| w/o hierarchy           | 78.93 | 84.68    | 80.65  | 77.70        | 89.91              | 67.92              |  |  |  |
| w direct query          | 78.01 | 84.22    | 80.12  | 76.56        | 89.69              | 66.32              |  |  |  |
| w/o weights             | 79.21 | 84.82    | 80.68  | 78.17        | 90.00              | 68.43              |  |  |  |
| Dataset: PolitiFact     |       |          |        |              |                    |                    |  |  |  |
| T5 <sub>base</sub> [30] | 59.09 | 59.53    | 59.71  | 59.42        | 61.23              | 56.95              |  |  |  |
| + DM-INTER              | 60.31 | 60.67    | 60.72  | 60.47        | 63.22              | 57.40              |  |  |  |
| w/o $\mathcal{L}_D$     | 59.63 | 60.43    | 60.53  | 60.05        | 64.23              | 55.03              |  |  |  |
| w/o hierarchy           | 59.73 | 60.11    | 60.31  | 59.95        | 61.59              | 57.84              |  |  |  |
| w direct query          | 59.16 | 59.59    | 59.86  | <u>59.51</u> | 60.97              | 57.34              |  |  |  |
| w/o weights             | 60.10 | 60.83    | 61.19  | 60.58        | 63.40              | 56.81              |  |  |  |
|                         | ]     | Dataset: | Snopes |              |                    |                    |  |  |  |
| T5 <sub>base</sub> [30] | 62.51 | 72.19    | 63.73  | 62.03        | 43.51              | 81.52              |  |  |  |
| + DM-INTER              | 64.21 | 73.85    | 66.08  | 63.56        | 45.71              | 82.72              |  |  |  |
| w/o $\mathcal{L}_D$     | 63.63 | 74.11    | 66.00  | 62.74        | 44.12              | 83.13              |  |  |  |
| w/o hierarchy           | 63.86 | 72.97    | 64.79  | 63.30        | 45.76              | 81.98              |  |  |  |
| w direct query          | 62.68 | 72.09    | 63.61  | 62.20        | 43.96              | 81.39              |  |  |  |
| w/o weights             | 63.96 | 73.37    | 65.41  | 63.38        | 45.61              | 82.33              |  |  |  |

#### **Observation 1**

In general, the performance of all ablation experiments is consistently lower than that of our comprehensive model DM-INTER

#### **Observation 2**

The performance of the four ablation versions can be ranked as:


w direct query < w/o  $\mathcal{L}_D$  < w/o hierarchy < w/o weights

shows their order of importance



## Evaluation: Sensitivity Analysis

$$\min_{\Phi,\Pi,\Psi,\mathbf{W}} \mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \alpha_i \left( \ell_{CE}(\mathbf{e}_i \mathbf{W}, y_i) + \beta \mathcal{L}_D \right),$$



#### **Observation**

The model is sensitive to  $\beta$ , and the model consistently shows the best performance on all datasets when  $\beta$  is approximately 0.0001



## Evaluation: Case Study

**Article**: Warning: This article contains spoilers! So many spoilers! Highly detailed, movie-ruining spoilers! "Somewhere out there, there's an 8-yearold girl dreaming of becoming a criminal," Debbie Ocean, played by Sandra Bullock, tells her mirrored reflection in one of the standout moments of "Ocean' s 8, " the highly anticipated sequel to Steven Soderbergh's iconic heist films. "You' re doing this for her." The film gives budding bad girls everywhere role models to look up to, but just how...

#### **Veracity Label**: fake **Prediction**: fake Reasoning sequence:

[Public] Is this article aimed at the public? yes [Emotion] Is there any emotional expression in this article? yes

[Individual] Does this article express any personal points? no

[Popularize] Is this an article aimed at popularization? no

[Clout] Is this an article aimed at pursuing attention? ves

[Conflict] Is this article attempting to create conflict? no

Article: The Coachella Valley Music and Arts Festival has announced the dates for its 20th anniversary and how to get pre-sale tickets. The festival is also offering a new upgrade for car camping. So when is Coachella 2019? The festival happens April 12-14 and April 19-21 at the Empire Polo Club in Indio. As it has done in recent years, promoter Goldenvoice will put a limited number of passes on sale early. This year you can get Coachella 2019 passes for Weekend 1 and 2 starting at 11 a.m. Pacific Friday, June 1.

#### Reasoning sequence:

[Public] Is this article aimed at the public? yes [Emotion] Is there any emotional expression in this article? no

[Individual] Does this article express any personal points? **no** 

[Popularize] Is this an article aimed at popularization? ves

[Clout] Is this an article aimed at pursuing attention? no

**Article**: Alex Rodriguez flatly denied a report that claimed he was threatening to cut child-support payments for his two daughters over a legal dispute with his ex-wife's brother. "I have always paid far more than the maximum in child support and that will never change," the former New York Yankees star said in a statement to Page Six. "It's highly offensive to me that my former brother-in-law, who has been trying to pursue a frivolous case against me for four years and has gotten absolutely nowhere with it ...

#### **Veracity Label**: fake **Prediction**: fake Reasoning sequence:

[Public] Is this article aimed at the public? no [Emotion] Is there any emotional expression in this article? no

[Individual] Does this article express any personal points? **no** 

[Nointent] This article does not convey any intents.

#### **Observation**

In summary, these cases consistently demonstrate the effectiveness of DM-INTER in reasoning intents



#### **Motivation**

We present to investigate the intents expressed by articles and utilize them to identify misinformation.

#### Method: DM-INTER

We design an intent hierarchy based on several psychological studies and use it to progressively reason intents with a pre-trained auto-regressive decoder.

## **Experiments**

Our experimental results can indicate that DM-INTER can improve the performance of the baseline models.



# Thanks.

Why Misinformation is Created? Detecting them by Integrating Intent Features

**Authors**: Bing Wang (wangbing1416@gmail.com),

Ximing Li, Changchun Li, Bo Fu, Songwen Pei, Shengsheng Wang









求實創新 勵志圖強 Jilin University